
Contract Number: H98230-08-D-0171 DO001, TO002. RT009
Report No. SERC-2009-TR-004

December 15, 2009
UNCLASSIFIED

Evaluation of Systems Engineering Methods, Processes
and Tools on Department of Defense and Intelligence

Community Programs - Phase II

Final Technical Report SERC-2009-TR-004
December 15, 2009

Principal Investigator: Richard Turner – Stevens Institute of Technology Co-
Principal Investigator: Forrest Shull – Fraunhofer Center, University of Maryland

Team Members
Barry Boehm - Professor, University of Southern California

Anne Carrigy - Graduate Student, Stevens Institute of Technology
Lori Clarke - Senior Researcher, University of Massachusetts at Amherst

Paul Componation - Senior Researcher, University of Alabama in Huntsville
Cihan Dagli - Senior Researcher, Missouri University of Science and Technology

Jo Ann Lane - Senior Researcher, University of Southern California
Lucas Layman - Senior Researcher, Fraunhofer Center

Ann Miller - Senior Researcher, Missouri University of Science and Technology
Sue O’Brien - Senior Researcher, University of Alabama in Huntsville

Leon Osterweil - Senior Researcher, University of Massachusetts at Amherst
Dawn Sabados - Senior Researcher, University of Alabama in Huntsville
Sandy Wise - Senior Researcher, University of Massachusetts at Amherst

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
15 DEC 2009

2. REPORT TYPE
Final

3. DATES COVERED

4. TITLE AND SUBTITLE
Evaluation of Systems Engineering Methods, Processes and Tools on
Department of Defense and Intelligence Community Programs - Phase
II

5a. CONTRACT NUMBER
H98230-08-D-0171

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Turner /Dr. Richard

5d. PROJECT NUMBER
RT 09

5e. TASK NUMBER
DO 001 TO 002

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stevens Institute of Technology University of Southern California
University of Massachusetts at Amherst University of Alabama in
Huntsville Missouri University of Science and Technology, Fraunhofer
Center at University of Maryland

8. PERFORMING ORGANIZATION REPORT
NUMBER
SERC-2009-TR-004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DASD (SE)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes the results from the second in a series of related efforts to address systems
engineering shortfalls in projects characterized as quick response, network enabled, or emergent. The
objectives of this task were to 1) Gather additional information on methods, processes and tools (MPTs)
associated with the environment identified in Phase 1 of this work and develop a taxonomy of MPTs
identified; 2) Investigate the use of micro-process modeling techniques to support the definition and
evaluation of MPTs; and, 3) Provide implementation guidance on the three MPTs recommended in Phase
1. The products of the research are directly relevant to the challenges currently being faced by the sponsor
œ The description of the three recommended MPTs in an expanded taxonomy and individual
implementation guidance œ The development of a micro-process model of Scrum in Little-JIL and
successful demonstration of fault tree and finite state verification analyses œ The identification of key
critical success factors for rapid response and innovative development environments The recommendations
for future research based on these results are also provided in this report.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

86

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Contract Number: H98230-08-D-0171 DO001, TO002. RT009
Report No. SERC-2009-TR-004

December 15, 2009
UNCLASSIFIED

Copyright © 2009 Stevens Institute of Technology, Systems Engineering Research Center

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense
through the Systems Engineering Research Center (SERC) under Contract H98230-08-D-0171. SERC is a
federally funded University Affiliated Research Center managed by Stevens Institute of Technology

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY
THIS STEVENS INSTITUTE OF TECHNOLOGY AND SYSTEMS ENGINEERING RESEARCH CENTER MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. STEVENS INSTITUTE OF TECHNOLOGY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. STEVENS INSTITUTE OF TECHNOLOGY DOES NOT MAKE ANY WARRANTY
OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is required
for any other external and/or commercial use. Requests for permission should be directed to the
Systems Engineering Research Center at dschultz@stevens.edu

* These restrictions do not apply to U.S. government entities.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009 2

This page intentionally left blank

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009 3

ABSTRACT

This report describes the results from the second in a series of related efforts to address
systems engineering shortfalls in projects characterized as quick response, network-
enabled, or emergent. The objectives of this task were to 1) Gather additional
information on methods, processes and tools (MPTs) associated with the environment
identified in Phase 1 of this work and develop a taxonomy of MPTs identified; 2)
Investigate the use of micro-process modeling techniques to support the definition and
evaluation of MPTs; and, 3) Provide implementation guidance on the three MPTs
recommended in Phase 1.

The products of the research are directly relevant to the challenges currently being faced
by the sponsor:

• the description of the three recommended MPTs in an expanded taxonomy
and individual implementation guidance

• the development of a micro-process model of Scrum in Little-JIL and
successful demonstration of fault tree and finite state verification analyses

• the identification of key critical success factors for rapid response and
innovative development environments

The recommendations for future research based on these results are:

• continue the identification of useful MPTs and their description in the
expanded taxonomy

• investigate the practicality and usefulness of a test bed facility to evaluate
incremental improvement of existing MPTs and new approaches to systems
engineering, including new MPTs

• conduct empirical studies of anecdotal MPT claims, e.g. scalability of Scrum

• use the gaps identified in this work to establish focused innovation teams to
create, evaluate and if appropriate, pilot new systems engineering approaches
and MPTs that will address each team’s specific gap

• investigate new process improvement methods that are applicable in rapid
response and innovative environments

• identify the characteristics of agile, adaptable processes for agile engineering

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009 4

This page intentionally left blank

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009 5

TABLE OF CONTENTS
Abstract .. 3

Table of Contents... 5

Figures and Tables.. 6

1 Summary ... 8

2 Introduction ...11
2.1 Definitions... 11
2.2 Approach.. 12

3 Methods, Assumptions and Procedures...13
3.1 Interviews.. 13
3.2 Micro­process Modeling... 13
3.3 Taxonomy Development .. 14

4 Results and Conclusions ..19
4.1 Follow­up Interviews .. 20
4.2 Critical Success Factor Analysis... 24
4.3 Population and Usefulness of Taxonomy... 28
4.4 Effectiveness of Micro­process Modeling... 29
4.5 MPT Implementation Guidance... 30
4.6 Community Building.. 31

5 Recommendations ...34
5.1 Recommendations on Taxonomy and Implementation Guidance.................................... 34
5.2 Recommendations on Micro­process Modeling .. 35
5.3 Recommendations for Future Research... 36

Appendix A ­ Survey Follow­up Interview Questions...40

Appendix B – Taxonomy Content...42
Taxonomy definitions .. 42
Scrum ... 43
Continuous Integration.. 47
Rapid Prototyping ... 51

Appendix C – Little­JIL Models..54
Defining Processes with the Little­JIL Process Definition Language .. 54
Scrum in Little­JIL .. 58
Analyzing Processes Defined with a Micro­Process Definition Language................................. 64
References.. 71

Appendix D – Implementation Guidance ..73
Packaged Method: Scrum.. 73
Packaged Method: Rapid Prototyping.. 78
Packaged Method: Continuous Integration.. 82

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

6

FIGURES AND TABLES
Figure 1. Systemigram of Phase II activities...9

Table 1. Counts of MPTs and MPT themes by challenge area.. 14

Figure 2. Most common themes for the Stakeholder challenge area............................... 16

Figure 3. Bridge Diagram for “Negotiation/Prioritization among stakeholders” theme..17

Table 2. Total number of identified MPTs and MPT themes ..28

Table 3. MPT Taxonomy layout with truncated example..29

Figure 4. Scrum Bridge Diagram ..44

Table 4. Scrum Taxonomy .. 45

Figure 5. Continuous Integration Bridge Diagram...48

Table 5. Continuous Integration Taxonomy...49

Figure 6. Rapid Prototyping Bridge Diagram... 52

Table 6. Rapid Prototyping Taxonomy ... 53

Figure 7. Little-JIL iconography ... 55

Figure 8. Top level of the Scrum process ...58

Figure 9. Elaboration of the Manage Product Backlog step .. 59

Figure 10. Elaboration of the Manage Product Release step...60

Figure 11. Elaboration of the Development Iteration step. ... 61

Figure 12. Elaboration of the Sprint Planning Meeting step ... 61

Figure 13. Elaboration of the Sprint step ...62

Figure 14. The Fault Tree generated by the Scrum definition, along with the hazard,
“Artifact product from Sprint is wrong”..66

Figure 15. Integration of Continuous Integration into the Scrum process definition 67

Figure 16. The Fault Tree generated from the integrated Scrum and Continuous
Integration processes using the hazard, “Artifact product from Sprint is wrong”...68

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

7

Figure 17. Progression of questions and answers used by the PROPEL tool to evolve a
finite state automaton precisely defining the property, “an integration failure is
always followed by rework”. ..69

Figure 18. The Finite State Automaton generated by the PROPEL session shown in
Figure 16...70

Figure 19. Elaboration of the Checked Work process shown in Figure 18 to show details
about the nature of the Rework step. ..70

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

8

This page intentionally left blank

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

9

1 SUMMARY
This research task is the second in a series of related efforts to address systems
engineering shortfalls in projects characterized as quick response, network-enabled, or
emergent. The objectives of this task were to 1) Gather additional information on
methods, processes and tools (MPTs) associated with the environment identified in
Phase 1 of this work and develop a taxonomy of MPTs identified; 2) Investigate the use
micro-process modeling techniques to support definition and evaluation of MPTs; and,
3) Provide implementation guidance on the three MPTs recommended in Phase 1.
Figure 1 summarizes the activities, showing initial states in green, interim states in
yellow, and products in blue.

Figure 1. Systemigram of Phase II activities

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

10

The results of this work are directly relevant to the challenges currently being faced in
the sponsor environment, and support sponsor-directed future research.

• Evaluation and Support of existing programs. The MPT taxonomy (see 3.3,
4.3, 5.1, and Appendix B) has articulated key challenges that must be addressed in
order to deliver agility in system engineering, along with MPTs that have been helpful
in some contexts and important gaps still remaining to be addressed. The taxonomy
can be used to evaluate whether teams are cognizant of, and addressing, the key
challenges, as well as to assess whether MPTs are currently being applied with the
necessary level of rigor.

• Implementation guidance for existing programs. The three recommended
MPTs highlight existing, well-defined practices that can help achieve beneficial system
engineering results under relevant constraints. The implementation packages (see 4.5
and Appendix D) developed for each of these MPTs are designed to help teams
interested in adopting them to make an informed decision about whether adoption
will yield worthwhile benefits, and to understand the rigor that is necessary in order to
yield the benefits.

• Systems Engineering Transformation (SET). The work directly supports the
Systems Engineering Transformation roadmap development by providing a baseline
of SE practice in the sponsor environment and identifying gaps identified to
understand the types of MPTs that need to be developed and evaluated (SERC-2009-
02, September 2009). The critical success factors (see 4.2) can be used in correlating
existing, new, and proposed MPTs and their target effects with project success in the
rapid development and innovation environment. Focusing on MPTs that address gaps
and also support the critical success factors may provide greater benefit in the near-
term.

• Research in difficult to access environments. The Little-JIL micro-process
modeling (see 3.2, 4.4, 5.2, and Appendix C) has demonstrated the feasibility of this
approach for matching candidate MPTs to teams working in various contexts. These
results show that this is likely to be an effective approach for filtering both newly
proposed and existing MPTs, in order to make recommendations about which are
likely to be the best fit for various teams. The success of the modeling and analysis
also indicate the usefulness of a test bed to exercise new ideas before piloting,
elevating the probability of pilot success.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

11

2 INTRODUCTION
The Systems Engineering Research Center (SERC) Evaluation of Systems Engineering
(SE) Methods, Processes and Tools (MPTs) research effort was initiated to provide a
broad sense of the availability or absence of useful SE MPTs, particularly in a fast-paced,
network-enabled, emergent development environment.

2.1 DEFINITIONS
An MPT is a systems engineering technique that fits into one of the following categories:

Method (M) – A collection of inter-related processes, practices, artifacts, agents,
resources and tools. A method is essentially a "recipe." It can be thought of as the
application of inter-related processes, practices and tools wherein different agents use
resources to create and apply artifacts to a class of problems.

Process (P) – A logical sequence of steps (tasks) intended to achieve an objective. The
objective achieved may be abstract (e.g. “negotiate among multiple stakeholders”)
and/or a composite of multiple individual goals (e.g. “Deliver a fixed-date, variable-
scope system”). Performance of a step is often the responsibility of an agent, which may
be a human, a device, or a software system. Performing the step may consume
resources and require access to various kinds of artifacts in order to execute. Execution
of a step will generally produce more artifacts. The structure of a process enables
several levels of aggregation (i.e. sub-processes) to allow understanding and analysis of
the process at multiple levels of abstraction in support of decision-making.

Tool (T) – A tool automates or partially automates one or more steps within a process
and thereby enhances process performance efficiency.

A useful MPT is defined as one that is:

• Relevant to the application environment: applicable to some subset of systems
within the target environment.

• Repeatable: sufficiently well defined that implementation is possible in a
different context.

• Likely to have significant impact: can materially improve systems engineering
practice in the application environment.

A viable MPT is successfully implementable in the target organization given
appropriate and reasonable tailoring.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

12

2.2 APPROACH
This task follows directly from the results of the initial MPT work.1 The three MPTs
recommended in the previous phase (Scrum, rapid prototyping, and continuous
integration) were the focus of most of the research.

Further investigation of MPTs was performed through follow-up interviews and
additional research. Based on the analysis of the interviews, a set of critical success
factors for development in rapid, innovative environments was identified. The guidance
used in the interviews is found in Appendix A.

A taxonomy for MPTs was developed based on previously gathered information
augmented by the interviews. The taxonomy was used to describe the three MPTs
recommended in the previous phase (Scrum, rapid prototyping, and continuous
integration). The taxonomy used themes defined from previous work and concepts from
micro-process definitions to establish and populate descriptions of MPTs. These
descriptions were shown to be useful for both implementing and validating the use of
MPTs. The taxonomy for the three MPTs is found in Appendix B.

To investigate the possible benefits of micro-process modeling in analyzing MPTs, the
Little-JIL micro-process modeling tool was used to develop models of Scrum. Analyses
were successfully performed using the models, including single point of failure and
finite state verification techniques. The results of the analysis were sufficient to validate
the use of such modeling techniques in the future. The models and analysis results are
found in Appendix C.

Implementation guidance for the three MPTs was developed based on the taxonomy and
the generic understanding of the environment defined in Phase I. The completed
implementation guidance packages are found in Appendix D.

Section 3 provides more detail on the actual execution of the approaches.

SERC organizations involved in the data collection and analysis include the Fraunhofer
Center for Experimental Software Engineering, Missouri University of Science and
Technology, Stevens Institute of Technology, the University of Alabama in Huntsville,
the University of Massachusetts at Amherst, and the University of Southern California.

1 Carrigy et al, “Evaluation of Systems Engineering Methods, Processes and Tools on
Department of Defense and Intelligence Community Programs: Phase 1 Final Technical
Report,” Systems Engineering Research Center, SERC-2009-02, September 2009.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

13

3 METHODS, ASSUMPTIONS AND PROCEDURES
A number of research methods were used to gather and analyze information for this
task. Follow-up interviews with individuals who had responded to the industry survey
played a major role. Additional interviews were conducted with organizations with
strong similarity to the sponsor environment and success in rapid response
development. Formal process models of proposed MPTs were built and analyzed. The
taxonomy from Phase 1 was extended and applied to the three recommended MPTs, and
the insights were applied directly to developing implementation guidance.

3.1 INTERVIEWS
Phone interviews were held with selected respondents to the Phase I industry survey
and with representatives of several commercial organizations that had specific
experience with the sponsor or whose particular business practices seemed highly
applicable to the sponsor’s environment. The primary intent of these interviews was to
gain additional insight into how organizations with some similarity to the sponsor
environment were implementing the three primary MPTs (Scrum, Rapid Prototyping,
and Continuous Integration). Additionally, questions were asked to better understand
the types of projects individual respondents were working on, to identify other MPTs
seen to be successful, and to gain additional insight into gaps in current MPTs.

Interviews were also held with representatives of organizations involved in both large
software intensive system development as well as rapid response system development.
These interviews were primarily used to derive critical success factors.

The guidance and questions used in these interviews can be found in Appendix A.
Relevant information obtained through these interviews was integrated into the
taxonomies for each MTP. The information gathered was also analyzed to identify
critical success factors.

3.2 MICRO-PROCESS MODELING
Process modeling is one way to study and analyze how well MPTs fit within an
organization’s workflow. As an exemplar for this approach, the team modeled the
recommended method Scrum in Little-JIL, a micro-process modeling language
developed at the University of Massachusetts, Amherst. The language is based on formal
semantics drawn from finite state machine representations, which allows a broad variety
of analysis techniques to be applied. Once constructed, the models demonstrated their
usefulness through two types of analysis activities: fault tree analysis and finite state
verification. The models and the analysis are provided in Appendix C.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

14

3.3 TAXONOMY DEVELOPMENT
A comprehensive taxonomy was developed to relate the key challenges involved in agile
system engineering, specific MPTs to address those challenges, and the specific
component parts of each MPT. To minimize subjectivity, this taxonomy was based on
the responses of practitioners from the Phase I survey. Survey responses were examined
to identify how each MPT recommended by industry and government practitioners
solves a given problem, to determine important underlying approaches. For example, a
variety of requirements challenges may be addressed through effective communication
techniques, leveraging expert personnel, or modeling. These general approaches were
termed MPT “themes.” By understanding the themes underlying common MPTs, new
MPTs can be created and current MPTs adapted to operate within the sponsor
environment while still retaining the aspects that make them successful in addressing
the challenge areas.

3.3.1 Qualitative analysis of survey responses

A multi-step process of qualitative analysis was performed to identify common themes
of how the MPTs mentioned in the survey responses addressed the various challenges.
Each step involved open coding: the process of identifying the categories in qualitative
data and the properties of those categories.2 First, the survey responses were examined
to identify unique MPTs for each challenge area. In total, more than 200 unique MPTs
were identified. Many MPTs (e.g. rapid prototyping) were suggested for multiple
challenge areas.

Second, the unique MPTs were grouped into categories of MPT themes. The themes
represent a strategy of how the MPTs address a particular challenge (e.g. prioritization
methods, personnel changes, change management). The themes and unique MPTs
grouped under them were reviewed and approved by a team of three researchers. More
than 30 themes were identified, and some themes (e.g. direct stakeholder
communication) appeared for multiple challenge areas. Table 1 summarizes the number
of MPTs and MPT themes identified for each challenge area.

Table 1. Counts of MPTs and MPT themes by challenge area

Challenge area Specific problems
identified

MPTs identified MPT themes

Requirements 22 89 17

2 A. L. Strauss and J. M. Corbin, Basics of Qualitative Research: Techniques and
Procedures of Developing Grounded Theory, Second Ed., Sage Publications, Thousand
Oaks, CA, 1998.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

15

Stakeholder issues 14 71 13

Sustainment 9 41 14

Integration 12 50 15

3.3.2 Example results – Codes for Stakeholder challenge area

The coding results of MPT themes for the stakeholder challenge area are depicted in
Figure 1. Direct stakeholder communication was the most commonly identified theme
among the MPTs in this challenge area. MPTs in this theme include “meet the
customer,” “participate in daily Scrum meeting,” “frequent stakeholder meetings,” and
more. The themes are a useful way of categorizing the survey responses, especially
those that do not mention a specific practice. For example, while “meet the customer” is
not a specific technique, it is indicative of a general approach to meeting the challenge.
Clustering MPTs into themes allows further analysis to be done to identify common
operational concepts.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

16

Figure 2. Most common themes for the Stakeholder challenge area

3.3.3 Mapping concepts to practices

In order to utilize the MPT themes for future scientific inquiry and to direct industry
adoption of MPT themes, we have created MPT bridge diagrams. An MPT bridge
diagram is comprised of three key elements: 1) the MPT theme; 2) the conceptual
elements of the theme; and 3) a taxonomy of methods, processes and tools related to the
theme. Figure 3 depicts the bridge diagram for the “iterative development or frequent
delivery” theme. Rapid prototyping, a recommended MPT, is highlighted in green, and
other MPTs recommended in the survey under this theme are outlined in an olive tone.

The conceptual elements of an MPT are the constituent parts which define the theme. In
Figure 3, a decision/arbitration process, obtaining stakeholder communication for input
and feedback, and the valuation of requirements are the hallmarks of the theme. All
three of these elements must be addressed or instantiated by a concrete practice in order
to perform “negotiation/prioritization among stakeholders.” The taxonomy on the right
hand side lists the MPTs under this theme and links them to the conceptual element
they instantiate.

The bridge diagram serves three purposes. First, going from left to right, an
organization adopting an approach to solving a challenge (i.e. adopting an MPT theme)
can identify which MPTs are available to instantiate the conceptual elements of that
theme. Second, going from right to left, an organization can assess whether or not their
existing practices match the conceptual elements for a theme. If not, then there is some
risk the theme is not properly instantiated and perhaps wasteful. Finally, the diagrams
can help illustrate gaps between the conceptual elements of a theme and the state of the
practice, i.e. where new MPTs need to be created or adapted in order to address a
particular challenge area met by a theme.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

17

Figure 3. Bridge Diagram for “Iterative Development or Frequent Delivery” theme

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

18

This page intentionally left blank

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

19

4 RESULTS AND CONCLUSIONS
The research team collected and analyzed data from the sources described in Section 3.
The results and conclusions as described in this section were the basis for the
recommendations in Section 5.

As described in the Summary (Section 1), these results are directly relevant to the
challenges currently being faced in the sponsor environment, and support sponsor-
directed future research. Particularly,

• Evaluation and Support of existing programs. The MPT taxonomy has
articulated key challenges that must be addressed in order to deliver agility in system
engineering, along with MPTs that have been helpful in some contexts and important
gaps still remaining to be addressed. The taxonomy can be used to evaluate whether
teams are cognizant of, and addressing, the key challenges, as well as to assess
whether MPTs are currently being applied with the necessary level of rigor.

• Implementation guidance for existing programs. The three recommended
MPTs highlight existing, well-defined practices that can help achieve beneficial system
engineering results under relevant constraints. The “packages” for each of these MPTs
are designed to help teams interested in adopting them to make an informed decision
about whether adoption will yield worthwhile benefits, and to understand the rigor
that is necessary in order to yield the benefits.

• Systems Engineering Transformation (SET). The work directly supports the
Systems Engineering Transformation roadmap development by providing a baseline
of SE practice in the sponsor environment and identifying gaps identified to
understand the types of MPTs that need to be developed and evaluated. The critical
success factors can be used in correlating existing, new, and proposed MPTs and their
target effects with project success in the rapid development and innovation
environment. Focusing on MPTs that address gaps and also support the critical
success factors may provide greater benefit in the near-term.

• Research in difficult to access environments. The Little-JIL micro-process
modeling has demonstrated the feasibility of this approach for matching candidate
MPTs to teams working in various contexts. These results show that this is likely to be
an effective approach for filtering both newly proposed and existing MPTs, in order to
make recommendations about which are likely to be the best fit for various teams. The
success of the modeling and analysis also indicate the usefulness of a test bed to
exercise new ideas before piloting, elevating the probability of pilot success.

The following paragraphs discuss the results of the individual activities.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

20

4.1 FOLLOW-UP INTERVIEWS
A portion of the previously conducted industry survey contained fields for indicating
willingness to join a community of interest and providing contact information. Of the
population who provided contact information, candidates for interviews were selected
based upon closeness of fit to the sponsor’s environment. Only survey respondents of
Good or Excellent fit to the sponsor’s environment as described in the interim progress
report were contacted for follow up interviews. As an additional filter, only respondents
who had answered at least half of the discussion questions were considered. To date, for
this group of 26 potential interviewees, 7 responded affirmatively, 3 declined, and the
remainder did not respond to the request. Only 5 participants could be scheduled within
the remaining timeline of this task. Interviews were conducted with these
representatives of 5 different companies in different industries.

The following list summarizes the projects discussed for each of these industries:

• Aerospace (Respondent A) – Multiple complex development efforts with
safety as the primary stakeholder value, followed by reliability and cost.
Development time can be decades, but still involve frequent requirements
changes. The development environment tends to involve stovepipes within
and between programs and concurrent execution, often with blinders on.
Interoperability of multiple subsystems exists.

• Defense (Respondent D) – Multiple secret and top-secret projects with 18 to
48 month delivery cycles of 100-500 KLOC software with complex
algorithms and volatile requirements. Systems must interface with other
systems for sharing of unclassified data, while keeping classified data
inaccessible, including anti-tamper protection on chips. Schedule was the
primary driver, projects were also evaluated by operational capability,
accuracy, integrity, availability, continuity, and cost.

• Gaming (Respondent G) – Developing the system to run an entire floor of
games provided by multiple vendors. This schedule driven project was a 1
year development effort with 200 employees and 20 teams. Interim and final
products were delivered. The project required interfacing with other systems
while maintaining information security (both for proprietary information and
for personal information from end users). 250-300 features were included.
Cost was not considered a priority.

• Healthcare IT (Respondent H) – This environment must show rapid progress
while adhering to statutory requirements, maintaining security of
information (with monetary penalties for breaches), and managing frequent
requirements changes. The total development cycle is 18 months with
quarterly delivery, and 200 story points per 2 week cycle (5000 function
points per product).

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

21

• Transportation (Respondent T) – This program developed and implemented
an SE process guidebook for Intelligent Transportation Systems in a DOT
context. The project included software development as well as integration
with an environment requiring expertise in physical infrastructure
development. Projects may be low, medium, or high in complexity, and cost
is not necessarily an indication of complexity. Schedule is in terms of years.

The following highlights did not apply directly to the MPTs in the taxonomy, but are still
of interest:

• Many organizations face the same problems (e.g. dynamic requirements)
which are not addressed by current MPTs. New ideas in SE are needed to
address them.

• MPTs cannot be replacements for thinking and communicating because
those are both key to good engineering and design. The expectation of tools
to provide answers leads to less thinking and validation that can cause issues
downstream.

• Having the right people with the right training is essential.

Relevant information obtained through these interviews has been integrated in the
sections below.

4.1.1 Scrum

Three of five respondents used Scrum. Two considered Scrum beneficial, while the third
was not certain if Scrum was beneficial. Sprints ranged from two to four weeks, with
daily stand-ups for two-week sprints and twice weekly stand-ups for the four week
sprints. Communication was a challenge cited by all respondents.

Respondent H’s implementation of Scrum uses two weekly meetings (instead of daily
stand-up meetings). Communicating problems with the team during these meetings was
cited as an issue. They have ~200 story points per two week sprint. This has led to
specific velocity expectations from the customer, and the respondent would recommend
using “percentage of work left” as a measurement to the customer instead of velocity (#
story points completed/sprint).

Respondent G used some Scrum practices, under the name “iterative development.” The
greatest challenge was running many parallel teams. Each team held daily stand-ups.
People (including team leads) were on multiple teams and just scheduling daily stand-
ups was an issue. The project involved both new development and the integration of
legacy components. Development cycles were four weeks in length with an interim and
final product release.

The requirements were frequently changing in terms of what iteration features were
implemented. As iterations were accomplished, features that had not been met were

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

22

shifted to later iterations. The shift wasn’t necessarily to the next iteration. Reallocations
were managed through a Change Control Board.

This project was a successful implementation of Scrum. Deadlines were met, but the
interviewee indicated that an earlier focus on performance and more effective use of
performance modeling would have improved the process.

Respondent D has used Scrum on less than 10% of programs. The program manager
represents the customer on these programs, and the requirements and product backlog
are formally documented as part of EVM. Product backlog was used as a measure and
updated after each daily meeting. It was unclear if Scrum improved success of the
programs.

System architecture was found to be essential for daily meeting. Self-management was
cited as a struggle. The ineffectiveness of scrum-of-scrum for coordinating multiple
teams meant that Scrum did not scale well beyond 10 people.

4.1.2 Rapid Prototyping

Four of five participants used Rapid Prototyping.

One used prototypes frequently and integrated successful prototypes into the developed
system. The expectation was that prototypes would be “designed for reality.” In cases
where prototypes were not integrated, lessons were learned, but time was wasted.

Three used rapid prototyping to aid in communicating with the customer and problem
solving, but developed as a separate effort (with hardware prototypes potentially
reserved as back-up systems). One cited budgetary constraints as a limitation. Another
indicated that sometimes rapid prototyping is a formal part of a program, but often it is
an internally-funded activity to accelerate technology maturity. Ensuring that
prototypes are discarded and not carried forward was considered the greatest challenge.
Rapid prototyping was considered beneficial in terms of reducing rework during the
design & development which reduces cost and schedule risk.

Respondent H uses limited Rapid Prototyping as a means of communication with
customer.

Respondent A uses Rapid Prototyping as a means of problem solving early on, but the
budget rarely allows for much rapid prototyping.

Respondent G used Rapid Prototyping throughout the development. Whenever possible,
prototypes were integrated into the system. The expectation was that prototypes would
be “designed for reality.” In cases where prototypes were not integrated, lessons were
learned, but time was wasted.

Respondent D typically uses rapid prototyping. Sometimes this is a formal part of a
program, but often it is an internally funded activity to accelerate technology maturity.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

23

Ensuring that prototypes are discarded and not carried forward into E&MD was
considered the greatest challenge. Rapid prototyping has been beneficial in terms of
reducing rework during the design & development which reduces cost and schedule risk.

4.1.3 Continuous Integration

Three of five respondents used continuous integration (CI). The two remaining
respondents have considerable hardware integration that limits the feasibility of CI. All
participants using CI found that automation of some processes was beneficial.

Respondent H uses CI with nightly builds with “very positive results.”

Respondent A works with large/complex hardware development that does not lend itself
to continuous integration. Integration occurs on a milestone basis.

Respondent G started using CI during the 3rd iteration. Initially, integration was all
manual, and trying to implement CI on a schedule driven project was a “nightmare.”
Once CI was integrated, it was beneficial, but starting CI sooner would have lead to
greater success.

Respondent D only uses CI on projects using Scrum. Textbook CI is used on these
projects. Automated static analysis is seen as a benefit, but the respondent stated that
they have no quantitative data to prove this.

The typical project involves manual builds initiated by the project engineer. Automated
integration testing is used, but it is also manually initiated.

4.1.4 Other MPTs Mentioned

Respondents also discussed or alluded to other MPTs. Change Control Boards were
recommended for managing requirements reallocation. Two respondents discussed the
benefits of pilot programs with customers prior to final release. Piloting allows users to
provide feedback while the system is still in development and may not have full
functionality. Also, implementation issues not captured during testing may be
highlighted through this type of release. In both cases, only a small number of users
were involved in pilots. Separation of sustainment and development with a distinction
between enhancing code (sustainment) and adding new functionality (development)
was suggested.

While none of the interviews were aimed at evaluating software tools, several were
mentioned, including Code Test, ClearCase, DOORS, Klockwork, LDRA and Test Real
Time.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

24

4.1.5 Gaps

There is no doubt that practitioners are concerned about methods, processes and tools
that do not meet their day to day needs and they seemed unable to find answers in many
areas. The following are gaps they mentioned:

• Tool for creating incremental requirements.

• Tools that help identify code and algorithms that are inherently sequential
(that can’t be split into pieces running in parallel on independent cores) or
that are susceptible to parallelism are needed.

• Static analysis tools capable of operating across multiple cores with low false
positive and low false negative rates are needed – especially for detecting
race, deadlock, livelock conditions.

• A real-time operating system that can dynamically assign tasks among cores
may be needed – possibly a hypervisor that coordinates the migration of
tasks from one core to another in a multitasking environment.

• Tools for visualization and analysis to support “around the table” problem
solving.

• New ideas in SE. Many organizations face the same problems (e.g. dynamic
requirements), which are not addressed by current MPTs.

• Critical Thinking. MPTs cannot be replacements for thinking and
communicating because those are both key to good engineering and design.
The expectation of tools to provide answers leads to less thinking and
validation that can cause issues downstream.

4.2 CRITICAL SUCCESS FACTOR ANALYSIS
Based on the analysis of a set of specially arranged organizational interviews, critical
success factors were identified that enable successful development in a rapidly changing
environment, particularly one focused on innovation. Most of the organizations
interviewed are involved in both traditional and rapid response system development.
The team interviewed:

• The Aerospace Corporation’s Concept Design Center (www.aero.org)

• Institute for Creative Technologies, University of Southern California
(http://ict.usc.edu/about)

• Lockheed Martin Corporation’s Skunk Works (Skunk Works Today |
Lockheed Martin)

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

25

• Northrop Grumman’s Futures Lab, joint venture with Applied Minds
(http://appliedminds.com/)

• Commercial Rapid-Development Company (requested anonymity).

Because all of the respondents considered the information discussed as proprietary,
actual responses captured from each interview are not provided. Rather, this section of
the report describes critical success factors that were common at several sites, if not all
sites.

4.2.1 Early Concept Exploration and Feasibility Assessment

All of the organizations that provided inputs indicated the importance of early concept
exploration and feasibility assessment that often required considerable modeling and
prototyping. The level of modeling and prototyping varied, typically based upon
perceived risks of the technical approach or the technologies to be integrated into the
solution. In order to encourage innovation, organizations think that it is important to
establish a supportive culture and environment.

4.2.1.1 Investment in Innovation Environment

Several organizations pointed out the importance in investing in innovation and
technology maturation ahead of an identified need, especially when customers may need
rapid responses to changing needs, missions, and threats. Innovation is very difficult to
achieve in stressful situations. Starting with a clean sheet of paper and designing a
solution quickly may produce a useful solution given the right engineering expertise, but
it will probably not reach the level of innovation.

To enable innovation, organizations:

• Include Responsible Play: Organize work to include responsible play
with new concepts and ideas in a supported lab environment

• Focus on Team Rewards: Set up a collaborative environment that
rewards team work rather than individual work. This leads to sharing and
collaborating without fear that their personal rewards (e.g., promotions,
raises, bonuses) will suffer if someone else gets the credit.

• Use Both Science and Art: Learn to balance engineering focus between
science and art.

• Make it OK to Fail: It is often through failures that people learn and adapt
ideas.

• Leapfrog: It should also be not-OK to not-fail. Keep teams from trying for
20% improvements; go for at least a factor of 2.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

26

• Multi-sourcing: If it's OK to fail, you want to have several teams trying
different approaches. This also stimulates the competitive juices, often even
within an organization. Some commercial companies have 3 design shops
that compete for the next version of their product.

4.2.1.2 Root Cause Analysis of Customer Problem

Spend time investigating the root cause of a customer’s problem. Sometimes the best
solutions focus on eliminating the root cause of the problem rather than developing
something to deal with the problem.

4.2.1.3 Reality Confrontation

Early prototypes are invaluable in both understanding the requirements through
iterative feedback from customer and understanding the capabilities and limits of new
technologies or existing technologies used in new ways. Much is learned from taking a
design on paper and translating it into a prototype that designers, customers, and
potential users can interact with. Have a working prototype on Day 2, and have real
users ready to exercise and comment on it. A combination with Leapfrogging is to do a
factor-of-1.5 solution, get some quick experience with it, and then try for a factor-of 4
solution. If you have to back off to a factor-of-3, you're still ahead.

4.2.1.4 Customer or Sponsor Commitment and Participation

For those cases where efforts are applied to a specific customer need, customer/sponsor
commitment and participation are extremely important. In fact, at some sites, if the
customer/sponsor does not provide the needed level of commitment and participation
in developing and assessing the feasibility of the requested solution, work is deferred.
The customer/sponsor participation is required to provide insights into the
requirements/user needs as well as to interact with models and prototypes to give
feedback to the concept developers. Note that innovative design may have no identified
customer or sponsor. For example, when the organization is attempting to develop a
breakthrough commercial product for a totally new market, they may rely on market
surveys and trends rather that a specific customer or sponsor.

4.2.2 Value-Adding Tools with which Users have Experience

Tools are required to succeed in this environment. However, the tools must be the right
(value-adding) tools and the users must be experienced with those tools. The wrong tool
or the right tool with no team expertise is not of value. For those organizations that
periodically tap their key corporate resources (i.e. super-stars) to work on special
innovative, rapid response projects or to conduct feasibility assessments of concept
designs, it is important that the project work environment include the tools that those
team members use in their day-to-day work. Another key theme is that tools don’t need
to be the best or the most sophisticated. Sometimes it is the simple, stable tools that
work best.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

27

4.2.3 The Right People

Most agree that you can have the best tools and the best processes, but without the best
people success is difficult at best. To achieve the desired results in an innovative, rapid-
development environment, organizations need to enable the best to achieve the desired
task.

4.2.3.1 Empower the Best

For the rapid response and up-front innovation, prototyping, and feasibility assessment
work, organizations typically focus on their super-stars and experts in the domain(s) of
interest. (Some experiences indicate that super-stars can be as much as 10 times more
productive than the average performers.) These people work together as a small, lean
team, collaborating almost continuously and developing frequent iterations and
refinements of concepts until the desired solution is identified and adequately
understood. Managers of these teams typically have full authority and responsibility for
them and the technical members are empowered to make the technical decisions.
Because of the relatively small size of many of these teams, the project organization is
often flat. For larger projects (e.g., new aircraft design and development), teams are still
relatively small when compared to the traditional team size, but there are typically not
enough super-stars to fully staff the project. However, some super-stars mixed with
committed and very experienced team members are still the norm.

4.2.3.2 Enable Holistic Concurrency

Have experts on tap who cover the key fielding considerations and their tradeoffs (for
example performance, reliability, usability, producibility, evolvability, cost), who
participate concurrently rather than sequentially, and who pro-actively keep up with the
state of the art in their domains.

4.2.3.3 Identify a Keeper of the Holy Vision:

The strongest successes come when the team has someone with enough range of
expertise and experience to understand and synthesize the components of solutions, and
to bring the right people together when problems come up (e.g., Kelly Johnson’s
principles for Boeing’s Skunk Works).

4.2.4 Supportive Work Environment

Whether or not the work is classified or proprietary, the innovative, rapid development
teams tend to work in their own large, relatively unstructured open space (sometimes
with cubicles) to encourage collaboration and experimentation. When the same key
people are being used frequently for intense rapid-response projects, it is important for
the organization to provide additional resources and rewards that will help these people
with their outside lives (e.g., family, external commitments). If people on the teams are

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

28

overly stressed, innovation and creativity will suffer. They could easily end up reverting
to a 9-to-5 mode that is counter-productive to the rapid-response goals.

4.3 POPULATION AND USEFULNESS OF TAXONOMY
Many distinct MPTs were recommended by survey respondents for addressing the
sponsor’s challenge areas. The recommendations included specific, well-defined MPTs
(e.g. Scrum, Incremental Commitment model, Pugh value analysis) and abstract
suggestions (prototype, frequent demonstration to the customer). The total number of
unique MPTs and MPT themes for each sponsor challenge area are shown in Table 2.
Some MPT themes and MPTs appear in multiple challenge areas.

Table 2. Total number of identified MPTs and MPT themes

Challenge area MPTs MPT
themes

Requirements – Changing requirements priorities and/or emerging
requirements

17 76

Stakeholders – Obtaining useful stakeholder input and dealing with
conflicting stakeholder requirements

14 56

Sustainment – Conflicts between developing new capabilities and
supporting the currently released system

14 37

Integration/interoperability – Integrating independently evolving
components into a larger system

15 48

Discussions with the sponsor suggested two principal objectives for using the taxonomy
in the sponsor organization:

1. To provide a list of potential techniques for addressing a development and the
process engineering required to implement them (i.e. a methodology shift,
transitioning to a new process, acquiring a new tool);

2. To support assessment of implemented MPTs by identifying the critical elements
that must be present in the development process.

The taxonomy shares definitions with elements of the micro-process modeling in Little-
JIL. The taxonomy has both a textual and graphical representation. Because of the
large number of potential MPTs, the textual or graphic representations of the taxonomy
are depicted for one Method or Process each. That is, the taxonomy applied to a Method
or Process will show the constituent (sub-)processes, Tools, Agents, Artifacts, and
Resources for that MPT (see Appendix B for definitions of Agents, Artifacts and

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

29

Resources). In future iterations of the taxonomy, a tool will be necessary to capture all
of the MPT taxonomy information in a single, interactive location.

The taxonomy developed is presented in Table 3. The taxonomy contents, as populated
to date, are found in Appendix B.

Table 3. MPT Taxonomy layout with truncated example

MPT Continuous Integration
Theme Frequent/continuous integration
Methods Continuous integration
Processes Integration process; Commit to the source repository; Automated build; Self-

testing build; Commit to the mainline daily; Build the mainline on an
integration machine; Build time optimization; Communication process;
Automated deployment process

Artifacts Source code; test code; build results; automated testing results; deployment
scripts

Agents Integration engineer
Resources Clone of the production environment for testing; dedicated integration build

machine; single source repository
Tools Continuous Integration – AccuRev, Anthill Pro, Apache Continuum, Apache

Gump, Automated Build Studio, Bamboo, CABIE, FinalBuilder, Hudson,
Parabuild, TeamCity, Team Foundation Server, Java (Ant, Ruby, etc), .NET
(Nant, MSBuild, etc), XUnit (Java – JUnit), FIT, Selenium, Sahi, Watir,
FITnesse, Capistrano

The development and tailoring of the taxonomy was a significant milestone. Anecdotal
evidence abounds of teams who claim they are applying a particular MPT, but have
tailored the process in such a way that key steps are missing, thus losing the beneficial
effects of the process. Conversely, MPTs that cannot be tailored to specific constraints
found on different teams will not be widely useful. Thus the primary goal of the
taxonomy was to describe MPTs in sufficient detail such that their key components
(processes, methods, artifacts, and resources) were identified and described, but
without imposing so much detail that the taxonomy would not be useful to system
engineering teams. Describing the MPTs using the taxonomy requires the user to
research the minimum set of required components, how those components should be
performed, and what benefits those components provide – that is, why each of those
components was truly required in order for teams to see the expected benefits of using
the MPT.

4.4 EFFECTIVENESS OF MICRO-PROCESS MODELING
The modeling and analysis of Scrum using the Little-JIL language illustrated three
significant ways such an activity can support MPT research:

1. Clear understanding and description of MPT relationships

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

30

2. Capability for formal analysis of MPT components at any level

3. Capability to identify impact of changes to the MPT at any level

The act of defining an MPT using Little-JIL clarifies the relations among the processes,
subprocesses, tools, agents, artifacts, and resources that comprise the method. It is easy
to identify how various processes comprise the method, the ways subprocesses comprise
the processes, how processes and subprocesses generate and consume artifacts and
products, the identities of the various agents and their responsibilities, and the existence
or absence of mechanisms to coordinate concurrent access to key artifacts.

While any clear graphical notation allows consideration of these relations, using a
rigorously defined process language allows researchers and practitioners to evaluate,
discuss and improve the model based on reasoning supported by the rigorous definition.
The Little-JIL process definition language semantics are based on finite state machines
to provide the precise semantic meanings of each of the language’s components.

The underlying rigor also serves as the basis for powerful analyses to offer greater
insights into such processes, to support integration with other methods, and to detect
defects and vulnerabilities. The Little-JIL Scrum method definition was used
successfully in such analyses. A fault tree was generated automatically and used to
identify a single point of failure in the process. This facilitated the removal of that
process vulnerability, as verified by analysis of a second automatically generated fault
tree. A second example showed how finite-state verification can be applied to a process
definition in order to identify process defects. One tool (PROPEL) was used to define a
specification of desired behavior, and another tool (FLAVERS) was used to scan a graph
that had been automatically generated from a Little-JIL process. FLAVERS identified a
process path whose execution would violate the PROPEL statement of desired behavior,
and further analysis suggested how the defect might be removed. These two
demonstrations underscored the value of a process defined using a rigorous language,
and the power of tools designed to exploit the rigor of the language.

Finally, by having an executable model that supports both defect analysis and
measurement, changes to the MPT can be implemented and their impact can be
evaluated before in vivo piloting. This provides the basis for a broad spectrum of
experimentation, ranging from process refactoring all the way to totally new
approaches.

4.5 MPT IMPLEMENTATION GUIDANCE
The implementation guidance for each of the MPTs recommended in Phase I is found in
Appendix C. Based on previous experiences with tech transfer, such packages need to go
beyond the textbook definition of an MPT—if the MPT would work as is, it would likely
have already been adopted. Rather, the packages need to include practical guidance
related to how the MPT needs to be tailored for the real world. On the other hand, a
common problem we have found is that teams may inadvertently tailor away some of

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

31

the beneficial aspects of an MPT, so that what they claim to be doing does not bear a
substantial resemblance to the real practice, and may not be as likely to be effective. For
this reason, the package also includes a section that describes the minimum level of
rigor that needs to be found in actual application in order to find the promised benefits.
This rigor is specified using the elements of the taxonomy developed in this work,
namely sub-processes, methods, resources, tools, and artifacts.

Specifically, each package contains information on:

• Why it is recommended: To help teams determine whether the MPT is a good
fit for their environment and constraints, a description is included of the
practical challenges it helps to address.

• Contexts where it is suitable: Not every MPT is a good fit for every team.
Information is provided as to what environmental aspects can facilitate or
enable the potential benefits of the MPT, and which make it more difficult or
entirely unsuitable for application.

• Known impacts on cost, quality, and schedule: Every practice has tradeoffs.
Experience reports and other measures from our interviews, survey, and
literature review are summarized to present an overview of the costs and
benefits of each MPT.

• How to use it / monitor it: To avoid the problem of teams tailoring away
necessary rigor, the basic processes, methods, artifacts, or resources that
need to be in place are described. On any team which is effectively applying
the MPT, these aspects should be visible. References to the appropriate
taxonomy sections of this report, where additional detail can be found about
these component pieces, are also provided.

• Useful resources: Teams that decide to adopt the MPT may find items on this
list helpful for putting it into practice. These items include concise overviews,
reusable resources, and helpful tools.

4.6 COMMUNITY BUILDING
Although the research team had wide-ranging expertise in the area of agile system
engineering, no single team can have sufficient expertise across all kinds of development
contexts. This turned out to be responsible for one of the significant results of this effort.
The tight constraints and challenges of the sponsor’s environment led the team to work
with practitioners facing similar contexts. Through them, verification of the
recommendations against practical experience was possible, and an understanding of
whether and how the recommended MPTs have been successfully tailored to this
context. The identification and engagement with this set of practitioners, first through

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

32

the industry survey and later through more comprehensive follow-up interviews, were
key to the research findings. Beyond providing useful input to the research products,
these practitioners will form the basis of a community of system engineers interested in
similar ideas about infusing agility into the development process. There is no doubt that
they will make positive contributions to the future work as well.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

33

This page intentionally left blank

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

34

5 RECOMMENDATIONS
The following recommendations represent the consensus of the research team. Other
recommendations were considered. Succeeding tasks will refine and augment those
provided.

5.1 RECOMMENDATIONS ON TAXONOMY AND IMPLEMENTATION
GUIDANCE

The MPT taxonomy structure has been iteratively refined and now is believed to be
robust and a suitable foundation from which to categorize MPTs to support systems
engineering and assessment in the sponsor environment. At present, the taxonomy has
been applied to the three recommended MPTs (Scrum, continuous integration, rapid
prototyping), though more MPTs can be added.

The MPT taxonomy itself is a useful characterization of systems and software
engineering techniques that provides a top-level view of potential MPTs. By viewing the
potential MPTs in the taxonomy, the sponsor may choose specific MPTs for further
evaluation based on their processes and tools, or the sponsor may eliminate MPTs that
involve processes that are obviously impossible to implement in the sponsor
environment. However, the taxonomy alone is not sufficient for evaluating candidate
MPTs for adoption or for assessing the sponsor’s teams’ practices. The taxonomy
should be a first step when vetting MPT candidates for adoption. The taxonomy depicts
critical elements essential to an MPT, but does not describe the interactions between
these elements, which are equally critical to successful MPT implementation. The
second step to vetting MPT candidates should be a formal processes analysis (e.g. Little-
JIL modeling) of the required interactions between the critical elements of the MPT.

The MPT Themes derived as part of taxonomy development will support future efforts
in a number of ways. First the MPT themes can be used to support gap analysis in
identifying strategies (or elements of these strategies) that currently exist in software
engineering domains but which currently have no practical implementation in systems
engineering domains. Second, the MPT themes and their elements can be used to guide
the development of new MPTs. Finally, multiple themes (i.e. multiple strategies) can be
applied to the same challenge area creating a more robust approach to the problem,
while identifying MPTs that implement the same theme may be indicators of
redundancy and/or waste in the current systems engineering methodology.

The MPT taxonomy would benefit from an interactive representation through a tool.
Incorporating the MPTs from the survey responses alone would create an unreadable
textual or graphical taxonomy. Also, an interactive tool would enable the presentation
of more relationships between the taxonomy elements. For example, different views on
the taxonomy could show the input/output relations of Artifacts to Processes, and the
responsibility of Agents to perform Processes and process steps. An interactive

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

35

representation could also be linked to or synchronized with the Little-JIL process
modeling to provide the most complete process representation.

While conducting this work, we found many indicators where future work on MPTs will
be necessary to truly enable agility, and better facilitate the effective development of
systems in tightly constrained, fast-reaction environments. We have compiled a set of
necessary elements that must be addressed by any solution intending to provide agility,
including themes such as the frequent integration of components and an iterative
development cycle that allows for periodic developer feedback. In many cases, these
themes act as requirements for MPTs that have not been developed yet.

Our work with the bridge diagrams has demonstrated them to be an effective way of
communicating the results of our research, and of understanding effective system
engineering MPTs that can fit within the sponsor’s context. We have found that these
diagrams give us a useful way of understanding those key system engineering themes
necessary to address practical problems; once we have a checklist of these themes to
look for we can move on to a more detailed discussion of whether the right MPTs have
been chosen for effectively addressing those themes.

5.2 RECOMMENDATIONS ON MICRO-PROCESS MODELING
Based upon the results of our research in this area, the following are recommendations
regarding subsequent research in this area:

• Elaborate the initial Little-JIL model of the Scrum process to lower levels of
detail in order to elucidate more features of this method.

• Define other methods in Little-JIL, especially those suggested for support of
agile development, to provide better insight into the nature of these other
methods.

• Study the models developed to determine ways in which they might be
integrated (as Continuous Integration and Scrum were integrated) to provide
better coverage of system development needs and to suggest ways in which
gaps might be filled.

• Apply the Fault Tree Analysis and Finite State Verification analysis
techniques demonstrated in this report more broadly to existing and
proposed new Little-JIL process definitions. These analyses should be aimed
at identifying defects and vulnerabilities in these Methods, and at using the
identification of these defects to suggest and verify improvements.

• Apply additional analysis techniques such as Failure Mode and Effects
Analysis and Discrete Event Simulation to Little-JIL process definitions in
order to help determine the effectiveness of these approaches in improving
process and method definitions.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

36

• The effectiveness of the various analysis techniques should be compared and
contrasted in order to determine the matches for techniques and desired
improvements in processes and methods.

• Develop an engine to support the execution of Little-JIL process definitions.
This engine will help evaluate and systematically improve systems
engineering MPTs as well as support system development. The effectiveness
of such automated aids to system development in guiding and assisting
humans should then be measured and assessed.

5.3 RECOMMENDATIONS FOR FUTURE RESEARCH
Based on our research and findings, we recommend the following six areas for future
research:

1. MPT identification and classification

2. Test bed facility

3. Empirical Studies

4. Innovation teams for new approaches

5. More effective process improvement

6. Characteristics of agile processes

These areas are described more fully in the following sections.

5.3.1 MPT identification and classification

Continue to identify and describe useful MPTs using the expanded taxonomy. As more
MPTs are described, the inter-relationships among them become more apparent, and
leverage points for targeted research will be identified.

5.3.2 Test bed facility

Investigate the practicality and usefulness of a test bed facility to evaluate incremental
improvement of existing MPTs and new approaches to systems engineering, including
new MPTs. This would include work with practitioners to develop and test
recommendations, both about how existing practices can (possibly with tailoring) help
address agility, and to pilot new MPTs so that we can determine whether they are worth
further deployment. The research team will carefully vet and evaluate these new ideas,
so that the sponsor can avoid spending resources introducing MPTs for which the
feasibility and effectiveness are still in question.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

37

The recommendations concerning Little-JIL and automated analysis tools would
provide the initial capabilities for the test bed facility. The Air Force Research
Laboratory’s Spruce project provides some experience and possible additional
infrastructure for applying this virtual test bed concept.

5.3.3 Empirical Studies

There is a need to empirically test some of the key questions about MPTs. Two questions
in particular that arose in the MPT research provide good examples of this type of
inquiry:

1. Does Scrum scale well to larger teams? Our work has indicated that the scrum
process is one of the most promising mechanisms for helping achieve agility. Its key
contribution is the ability to provide rapid feedback to the development team, both
in terms of keeping resources effectively focused on the task at hand, and rapidly re-
prioritizing tasks as more feedback is received from the customer. As we indicated in
the packaging section, however, it is not clear that scrum can easily scale past small
team size. The anecdotal evidence is unclear as to whether large teams can be
effective with this approach or not, and we could find no quantitative tests. Where
successful application of scrum has been described on large teams, it typically relies
on a “scrum of scrums” approach. Unfortunately, this MPT has not been well defined
and anecdotal evidence can be found to support both its success and failure. Future
work could focus on better defining effective MPTs that address the problem of scale,
relying on both experiences at proxy organizations and explicit test / observation
where appropriate.

2. How costly is continuous integration? Continuous integration seems to be another
linchpin of agility, especially in software-intensive systems. However, anecdotally we
have found many concerns raised about the cost of this practice, and our work so far
has not uncovered any good measures or heuristics on that regard. Future work
should focus on empirical studies of this process in real development environments
to better quantify the effort and costs required to obtain effective results using this
practice. The objective would be to determine whether or not the cost is likely to be a
prohibitive factor in adopting this MPT, and to give better guidance to teams who do
adopt it as to how to schedule for it.

5.3.4 Innovation teams for new approaches

The MPT research identified a number of gaps in the MPT arsenal. Innovation teams,
each focused to create, evaluate and if appropriate, pilot new systems engineering
approaches and MPTs, could be established to address one or more specific gaps. The
SERC represents a large cross-section of the systems engineering research community.
The support from the practitioner and innovative community developed in this research
provides a foundation for a strong community to participate in the revisioning and
transformation of systems engineering.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

38

5.3.5 More effective process improvement

With the recommendations of existing MPTs and the development of new approaches, it
is important to revisit the transition, adoption, and continuing evaluation of systems
engineering activities in operational environments. Current process improvement
paradigms (e.g. CMMI, ISO-9000) have not been shown to meet the needs of current
development organizations. This research would investigate new process improvement
methods that are applicable to rapid response and innovative environments.

5.3.6 Characteristics of agile processes

To be truly effective, MPTs that support agile systems engineering should be applied in
processes that are as agile as the developments they support; that is, the processes need
to respond to significant changes in the environment without breaking. Defining
characteristics of such agile processes is key to creating, managing, and improving them.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

39

This page intentionally left blank

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

40

APPENDIX A - SURVEY FOLLOW-UP INTERVIEW
QUESTIONS

Interview Sheet

Assessment of Systems Engineering Methods, Processes and Tools (MPTs)
to Support Agile System Development

11/16/2009

Background:

This interview is part of a series of research efforts working to address systems
engineering shortfalls in projects characterized as quick response, network-enabled, or
emergent. You were requested to participant based on your responses to our earlier on-
line survey of systems engineering MPTs.

We are looking at a subset of agile tools: scrum, rapid prototyping, and continuous
integration. Three types of information are being requested as part of this interview.
The first is a description of your product development environment. The second is a
description of how you apply these MPTs in practice to help you meet stakeholder,
organization and development environment requirements. The third is your perception
of the relative strengths and areas for improvement in the MPTs you are using. The
questions in the interview are used as a guide only. If you have related comments or
suggestions on MPTs please let us know. We will also check to see if you would like a
copy of the final report of the interviews.

For more information or to follow up on this work, please contact Rich Turner,
rturner@stevens.edu.

Questions:

1. What are the primary stakeholder values (such as schedule, cost, reliability,
maintainability, etc.) that drive your product development environment?

2. Please describe the typical projects that you are currently involved with in terms of
size, complexity, duration and/or stability of requirements?
a. Domain – e.g. commercial, defense, contract

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

41

b. Size – e.g. approximate KLOC (thousand lines of code), if applicable
c. Relative complexity – low, medium, high
d. Duration – Deliverable cycle and age of product
e. Requirements stability – stable (up front definition and commitment), infrequent

changes, frequent changes
3. How would you characterize your product development environment in terms of

information sharing, security and/or interfacing with other systems or system of
systems?

4. Does your product involve information sharing with outside systems?
5. Does your product interface/interoperate with other components?
6. Is security a strict requirement for your system? What are the implications of a

security breach?
7. Do you use Scrum to support the typical projects you are involved in?

a. How have you had to tailor Scrum for your context?
b. What challenges have you faced in implementing Scrum in your development

environment? Has Scrum influenced your development environment in a positive
or negative way?

c. Has Scrum enabled your team to be successful in meeting the needs of your
stakeholders? Why or why not?

8. Do you use rapid prototyping to support the typical projects you are involved in?
a. How have you had to tailor rapid prototyping for your context?
b. What challenges have you faced in implementing rapid prototyping in your

development environment? Has rapid prototyping influenced your development
environment in a positive or negative way?

c. Has rapid prototyping enabled your team to be successful in meeting the needs of
your stakeholders? Why or why not?

9. Do you use continuous integration to support the typical projects you are
involved in?
a. How have you had to tailor continuous integration for your context?
b. What challenges have you faced in implementing continuous integration in your

development environment? Has continuous integration influenced your
development environment in a positive or negative way?

c. Has continuous integration enabled your team to be successful in meeting the
needs of your stakeholders? Why or why not?

10. In your current or expected product development efforts, what challenges exist for
which there are no good MPTs?

11. (If time permits.) What other processes, practices, or tools does your team use to
manage/deal with changing requirements, stakeholder feedback,
integration/interoperability, maintenance?

12. What other comments or suggestions do you have on the MPTs?
13. Would you like a copy of the final report from these interviews?

Email: ____________________________________

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

42

APPENDIX B – TAXONOMY CONTENT

TAXONOMY DEFINITIONS
Method (M) – A Method is a collection of inter-related processes, practices, artifacts,
agents, resources and tools. A method is essentially a "recipe." It can be thought of as
the application of inter-related processes, practices and tools wherein different agents
use resources to create and apply artifacts to a class of problems.

Process (P) – A process is a logical sequence of steps (tasks) intended to achieve an
objective. The objective achieved may be abstract (e.g. “negotiate among multiple
stakeholders”) and/or a composite of multiple individual goals (e.g. “Deliver a fixed-
date, variable-scope system”). Performance of a step is often the responsibility of an
agent, which may be a human, a device, or a software system. Performing the step may
consume resources and require access to various kinds of artifacts in order to execute.
Execution of a step will generally produce more artifacts. The structure of a process
enables several levels of aggregation (i.e. sub-processes) to allow understanding and
analysis of the process at multiple levels of abstraction in support of decision-making.

Tool (T) – A tool automates or partially automates one or more steps within a process
and thereby enhances process performance efficiency.

Artifact (Ar) – An artifact is an entity produced by the execution of a process or step.
Artifacts are used either as input to another process or step, or as part of the final
product produced by the process or method. Artifacts may be tangible objects, but may
also be software objects such as files, reports, analyses, or documentation. In the textual
taxonomy, related processes that produce and use artifacts are identified.

Resource (R) – A resource is an entity that is required as a support to the performance
of a process or step, but which is not a tool or an artifact. For example, a web
conferencing tool is a resource that may be used to assist in a planning meeting (but is
not considered a Tool in the taxonomy because it does not automate steps within the
process of planning). An integration machine that contains a clone of the deployment
environment may be a resource used during integration testing. In the textual
taxonomy, related processes that use the resources are identified.

Agent (Ag) – An agent is a human actor that is responsible for the performance of a
process or step. An agent may require the assistance of resources in order to perform
the process or step. Agents are responsible for the completion of the process or step,
either by personal activity or by assignment of some or all parts of the step to other
agents. In the textual taxonomy, the related processes for which the agents are
(partially) responsible for are identified.

SE
R

C
-20

0
9

-T
R

-0
0

4

UN
C

LA
SSIFIED

15 D

ecem
ber 20

0
9

 C
on

tract N
u

m
ber: H

9
8

230
-0

8
-D

-0
171

D
O

0
0

1, T
O

0
0

2. R
T

0
0

9

4
3

SC
RUM

 Theme

Elements

System Specification

Implementation

Verification

Validation

Evolution and maintenance

Project management

lr- 1
D
___.
--+

MPT from SUIVey
responses for this theme

recommended MPT

is part of

implements

Methods

Processes

Tools

Agile process

I ScrumWorks I

Hybrid development
method

I Project Cards I
I OnTime I I ScrumDesk I

Mini spirals

Lean software
develop11ent

I Versio10ne I

Feature-Driven
Development

Artifacts

Release burndown
chart

I Sprint backlog I
Sprint burndown chart

Product backlog

Agents

I Product Owner I
I ScrumM aster I
I SprintT earn I

Resources

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

44

Figure 4. Scrum Bridge Diagram

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

45

Table 4. Scrum Taxonomy

MPT or
Theme

Scrum

Methods Scrum
Processes Release Planning Meeting – The purpose of release planning is to establish a plan and

goals that the Scrum Teams and the rest of the organizations can understand and
communicate;
Sprint – A Sprint is an iteration. Sprints are time‐boxed – A period of 30 days of less
where a set of work will be performed to create a deliverable;
Sprint Planning Meeting – The Sprint Planning meeting is when the iteration is planned.
It is time‐boxed to eight hours for a one month Sprint. For shorter Sprints, allocate
approximately 5% of the total Sprint length to this meeting;
Sprint Review – This is a four‐hour time‐boxed meeting for one month Sprints. For
Sprints of lesser duration, this meeting must not consume more than 5% of the total
Sprint;
Sprint Retrospective – After the Sprint Review and prior to the next Sprint Planning
meeting, the Scrum Team has a Sprint Retrospective meeting. At this three hour, time‐
boxed meeting the ScrumMaster encourages the Scrum Team to revise, within the
Scrum process framework and practices, their development process to make it more
effective and enjoyable for the next Sprint;
Daily scrum stand‐up meeting – A daily 15‐minute inspect and adapt meeting at which
progress and impediments to progress are reviewed); Interviews with practitioners
indicated that less frequent meetings (bi‐weekly) were associated with difficulty in
communicating issues;

Artifacts Product backlog [Produced by: Release Planning Meeting. Used in: Sprint Planning
Meeting, Sprint Review] (All work to be performed in the foreseeable future, both well
defined and requiring further definition; A prioritized list of everything that might be
needed in the product);
Sprint Backlog [Produced by: Sprint Planning Meeting; Used in: Sprint Review, Sprint
Retrospective; Daily stand‐up] (Work which is well‐enough defined that it can be
worked on with relatively little change over a period of 30 days or less and will result in
a tangible, incremental deliverable; A list of tasks to turn the Product Backlog for one
Sprint into an increment of potentially shippable product);
Burn‐Down Charts – [Produced by: Sprint, Used in: All processes]

Release Burn‐Down measures remaining Product Backlog across the time of a
release plan;
Sprint Burndown measures remaining Sprint Backlog items across the time of a
Sprint;

Agents Product Owner / Product Manager [Responsible for steps in: Release Planning

Meeting, Sprint Planning Meeting, Sprint] – The Product Manager is responsible for
maintaining Product Backlog, along with estimates for how much work is required for a
backlog item. As the product is built incrementally, the Product Manager re‐estimates
(sometimes the feature is only partially implemented) or zero's (feature completed)

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

46

backlog items.;
ScrumMaster [Responsible for steps in: All processes] – The ScrumMaster is the person
who conducts the Scrum meetings, empirically measures progress, makes decisions,
and removes impediments that slow or stop work. This is often the engineering or
marketing manager for this product or system area. The Scrum Master is responsible
for the daily Scrum meeting. They must ask the following 3 questions at each daily
meeting: 1. What have you done since the last scrum meeting? 2. What has impeded
your work? 3. What do you plan on doing between now and the next scrum meeting?
They are also responsible for making decisions immediately, if required to remove
impediments to progress, and noting impediments that must be resolved external to
the meeting and causing them to be removed. Once the sprint is underway, new
backlog cannot be added to the Sprint except when the ScrumMaster determines that a
new backlog item will enhance the viability of the product, is in alignment with the
sprint, builds on the sprint’s executable, and can be completed within the sprint’s time
frame.
Sprint Team (Cross Functional) [Responsible for steps in: All processes] – The sprint
team has final say in estimating and determining what they can accomplish during the
sprint.

A useful link that discusses the 3 different roles:
http://www.scrumalliance.org/pages/scrum_roles

Resources
Tools

Danube – ScrumWorks Pro / ScrumWorks Basic; Axosoft – OnTime; VersionOne;
AgileBuddy; Acunote; BananaScrum; FireScrum; ThoughtWorks – Mingle; Project Cards;
Scrummy Pro; ScrumDesk; Inflectra – SpiraPlan; Scrum For Team System – TaskBoard;
TinyPM; Protonotes

SE
R

C
-20

0
9

-T
R

-0
0

4

UN
C

LA
SSIFIED

15 D

ecem
ber 20

0
9

 C
on

tract N
u

m
ber: H

9
8

230
-0

8
-D

-0
171

D
O

0
0

1, T
O

0
0

2. R
T

0
0

9

4
7

C
O

N
TIN

UO
US IN

TEG
RA

TIO
N

Theme

Elements

Multiple daily integrations

Maintain a single source reposkory I• • I

Build process

Verification of integrated product

Build results notification

Integration wkh mainline

E1
C~]
--+
--+

MPT from survey
responses for this theme 1 •

re co mmended MPT

is pa rt of • •

implements••

Methods

Processes

Tools

Bl CPPUnkl

ntinuous
egration [: -.

c:J I MSBuild I

....________, G c:J I Selenium I

Build lhe mainline on
integration machine

I Bamboo I

Artifacts

I Source code J

I Te& code J

Build results

automated te&ing
results

Deployment scripts

Agents

Integration engineer

Resources

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

48

 Figure 5. Continuous Integration Bridge Diagram

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

49

Table 5. Continuous Integration Taxonomy

MPT or
Theme

Continuous Integration

Methods Continuous integration
Processes Integration process – Developers integrate their code multiple times daily with a copy

from the mainline, verifying their code against the build tests
Commit to source repository – Developers commit their code to a single source
version control system, e.g. Subversion, CVS, Software Configuration and Library
Manager (IBM)
Automated build – The system is built automatically when code is committed by
developers
Self‐testing build – Upon system build, the integration machine executes a test suite
that performs automated verification (unit, integration and systems tests);
Commit to the mainline daily – After developers have tested their changes against the
mainline, changes are committed to the mainline so that changes are communicated to
other developers daily (capture changes made by other developers in the time you
have been working on your version);
Build the mainline on an integration machine – Once the developer commits, a final
integration build against the mainline (which contains the latest commit) is triggered
on an integration machine. This final build ensures there are no conflicts with changes
from another developer and to eliminate environmental difference between the
developers’ machines.
Build time optimization – use engineering practices to keep the build time low to
provide rapid feedback to developers on broken builds or failed tests (e.g. using a
staged build)
Communication process – ensure that everyone can easily see the state of the
mainline and the changes that have been made to it. Manual builds should have
results communicated to developers, while automated builds may send
communications or provide a dashboard of build results.
Automated deployment process – have scripts that will allow you to deploy the
application into any environment easily; also consider rollback.

Artifacts Source code [Produced by: Commit to the source repository; Used in: All processes]
Test code [Produced by: Commit to the source repository; Used in: Automated build,
Self‐testing build, Commit to the mainline, Build the Mainline on an Integration
Machine];
Build results [Produced by: Automated build; Used in: Communication process];
Automated testing results [Produced by: Self‐testing build; Used in: Communication
process];
Deployment scripts [Used in: Automated build; Build the mainline on an integration
machine; Automated deployment process]

Agents Integration engineer [Responsible for steps in: Automated build; Self‐testing build;
Build the mainline on an integration machine; Build time optimization; Communication
process; Automated deployment process]

Resources Clone of the production environment for testing [Used in: Automated build; Self‐
testing build; Build the mainline on an integration machine]– Integration testing and
builds should be performed in a clone of the production environment

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

50

dedicated integration build machine
Tools Continuous Integration – AccuRev, Anthill Pro, Apache Continuum, Apache Gump,

Automated Build Studio, Bamboo, CABIE, Cascade, Cerberus, ControlTier,
CruiseControl, Cruise, CruiseControl.NET, CruiseControl.rb, Draco.NET, FinalBuilder,
Hudson, Parabuild, TeamCity, Team Foundation Server
Automated Build – Java (Ant, Ruby, etc), .NET (Nant, MSBuild, etc)
Self Testing – XUnit (Java – JUnit), FIT, Selenium, Sahi, Watir, FITnesse
Automate Deployment (and Rollback) – Capistrano

SE
R

C
-20

0
9

-T
R

-0
0

4

UN
C

LA
SSIFIED

15 D

ecem
ber 20

0
9

 C
on

tract N
u

m
ber: H

9
8

230
-0

8
-D

-0
171

D
O

0
0

1, T
O

0
0

2. R
T

0
0

9

51

RA
PID PRO

TO
TYPIN

G

Theme

Elements

Time-boxed development process

Delivery to stakehOlders

Evaluation

Feedback Into deYelopment
process

t:J
D
~

---+

MPT from survey
responses for this theme

recommended IVPT

is part of

implements

Methods

Processes

Tools

Short time between F ,Is ~f ~ ld development ~ Short releases deliveries

I Rapid proto;;

Rational Stalemate I OEDAE I

Short dweiOpment
Sptlnts

I Prot~g~ I

Iterative prototyplng

Artifacts

I Prototypes I
H~h-leve l business

requirements

Prototype evaluation
findings

Agents

Evaluation personnel

Prototype dwelopers

Resources
Business/system

objectives

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

52

Figure 6. Rapid Prototyping Bridge Diagram

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

53

Table 6. Rapid Prototyping Taxonomy

MPT or
Theme

Iterative development or frequent delivery

Methods Rapid Prototyping
Processes Model business requirements – Create a specification (likely informal) of the business

objectives for the system. These business objectives are used to generate functional
scenarios, key data elements and interactions with other systems.
Select system areas for prototyping – Select the system areas that will be prototyped
to inform decision makers. Potential areas for prototyping include: desired
functionality, technology selection (e.g. which data base vendor to use), and user
interfaces.
Develop evaluation criteria – Determine and document the criteria against which the
prototypes will be evaluated.
Rapid development of minimal prototypes – Rapidly create prototypes that can be
evaluated by decision makers. Prototypes may be created using presentation slides,
visual drawings, mock user interfaces in a programming language, etc. Prototypes
should provide enough information for decision makers to achieve their goal of
evaluating the desired functionality, technology selection, user interface, or other
system area.
Evaluate prototype – Decision makers evaluate the prototype against a set of criteria.
Evaluation may occur through presentation, analysis, and/or use.
Evaluation preparation ‐ Prepare necessary artifacts for evaluation (e.g. tasks that
users will perform while using the prototypes) and determine/solicit participants where
necessary.
Incorporate evaluation results into future development – The results of the evaluation
are captured and used to inform further prototyping or to guide the development of
more complete system specification.

Artifacts Prototypes [Produced by: Rapid development of minimal prototypes; Used in: Evaluate
prototype; Evaluation preparation]
High‐level business requirements [Produced by: Model business requirements; Used
in: Select system areas for prototyping, Develop evaluation criteria; Rapid development
of minimal prototypes]
Prototype evaluation findings [Produced by: Evaluate prototype; Used in: Incorporate
evaluation results into future development]

Agents Evaluation personnel [Responsible for steps in: Evaluate prototype];
Prototype developers [Responsible for steps in: Rapid development of minimal
prototypes; Evaluation preparation]

Resources Business/system objectives [Used in: Modeling business requirements; Select system
areas for prototyping; Develop evaluation criteria]

Tools Prototype modeling, development and analysis ‐ Rational Statemate ‐ (a graphical
design, simulation, and prototyping tool for the rapid development of complex
embedded systems); GEDAE (Advanced DSP software development tool. It enables
rapid prototyping, speeds development and analysis, simplifies optimizations, and
increases performance and flexibility); Protégé (Protégé is a free, open source ontology
editor and knowledge‐base framework. It provides a plug‐and‐play environment that
makes it a flexible base for rapid prototyping and application development.)

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

54

APPENDIX C – LITTLE-JIL MODELS

DEFINING PROCESSES WITH THE LITTLE-JIL PROCESS DEFINITION
LANGUAGE
Little-JIL is a process definition language [Wise 2006] that, along with its interpreter
Juliette [Cass 2000], supports specification and execution of processes involving
different agent and non-agent resources. A Little-JIL process definition is comprised of
four orthogonal components: 1) a coordination specification, 2) a resource specification
that includes constraints, 3) a specification of artifacts and their flow and 4) a
specification of the behaviors of those resources that can be assigned as agents.

The most immediately noticeable aspect of a Little-JIL process definition is the visual
depiction of the coordination specification. This components of the Little-JIL process
definition looks initially somewhat like a task decomposition graph, in which processes
are decomposed hierarchically into steps. The steps are connected to each other with
edges that represent both hierarchical decomposition and artifact flow. Each step
contains a specification of the type of agent resource needed in order to perform the task
associated with that step. Thus, for example, in the context of a software development
process, the agents would be entities such as programmers, testers, managers, the
customer, etc. The collection of steps assigned to an agent resource defines the interface
that the agent must satisfy to participate in the process. It is important to note that the
coordination specification includes a description of the external view and observable
behavior of such agent resources. But a specification of how the agent resources
themselves perform their tasks (their internal behaviors) is not a part of the
coordination specification, but rather is the fourth components of a Little-JIL process
definition. It is important to note that Little-JIL enforces a sharp separation of
concerns, separating the internal specification of what a resource is capable of doing and
how the agent will do it, from the specification of how agents are to coordinate their
work with each other in the context of carrying out the overall process.

The central construct of a Little-JIL process definition is a step. Steps are organized into
a hierarchical tree-like structure. The leaves of the tree represent the smallest specified
units of work, each of which is assigned to an agent resource that has characteristics
consistent with those defined as part of the definition of the step. The tree structure
defines how the work of these agent resources will be coordinated. In particular, the
agent assigned responsibility for executing a parent node is responsible for coordinating
the activities of the agents assigned to execute all of the parent’s children. Figure 7
shows the graphical representation of a Little-JIL step with its different badges and
possible connections to other steps.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

55

Figure 7. Little-JIL iconography

The interface badge is a circle on the top of the step name that connects a step to its
parent. The interface badge represents the specification of any and all artifacts that are
either required for, or generated by, the step’s execution. The interface badge also
represents the specification of any and all resources needed in order to support the
execution of the step. Chief among these resources is the single resource designated as
the step’s agent. Below the circle is the step name. A step may also include pre-requisite
and/or post-requisite badges, which are representations of steps that need to be
executed before and/or after (respectively) this step for the proper performance of the
step’s execution. A simple form of pre and post-requisites can be simple predicates that
need to be evaluated by the process execution engine. A pre-requisite is shown with an
upside down triangle on the left of a step bar. Similarly a post-requisite is shown with a
regular triangle on the right of a step bar. Inside the central black box of the step
structure, there are three more badges. On the left is the control flow badge, which
specifies the order in which the child sub-steps of this step are to be executed. A child
(substep) of a step is connected to the parent by an edge emanating from the parent and
terminating at the child. Artifact flows between the parent and child are indicated by
annotations on this edge.

On the right of the step bar is an X, which represents the exception handler capabilities
of the step. Below this badge are exception edges that are connected to any and all
handlers defined to deal with exceptions that may occur in any of the descendants of
this step. Each handler itself a step (that may sometimes be defined to be null), and is
annotated to indicate the type of exception that it handles. Here too, artifact flow
between the parent and the exception handler step is represented by annotations on the
edge connecting them. This edge also bears an annotation indicating the type of
exception handled. In the middle of the step bar is a lightning bolt icon, which
represents the message handling capabilities of the step. Attached to this badge by
message handling edges (also known as reaction handling edges) are any and all
handlers defined to deal with messages that may emanate from any step in the process
definition. A message can be generated from outside the process as well. The message
handling capability is quite similar to the exception handling capability, but while
exception handlers respond only to exceptions thrown from within their substep
structure (a scoped capability), message handlers can respond to messages generated
anywhere (an unscoped capability). If there are no child steps, message handlers, or

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

56

exception handlers, the corresponding badges are not depicted in the step bar.

One of the important features of the language is its ability to define control flow. There
are four different non-leaf step kinds, namely sequential, parallel, try, and choice.
Children of a sequential step are executed one after another from left to right. Children
of a parallel step can be executed in any order, including in parallel, depending on when
the agents actually pick up, and begin execution of, the work assigned in those steps. A
try step attempts to execute its children one by one starting from the leftmost one and
considers itself completed as soon as one of the children successfully completes. Finally
a choice step allows only one of its children to execute, with the choice of which child
being made by the agent assigned to execute the step.

The pre-requisites and post-requisites associated with each step act essentially as
guards, defining conditions that need to hold true for a step to begin execution or to
complete successfully. Exceptions and handlers are control flow constructs that
augment the step kinds. The exceptions and exceptions handlers work in a manner that
is similar in principle to the way in which they work in well-known contemporary
application programming languages such as Java. Exceptions indicate an exceptional
condition or error in the process execution flow, and handlers are used to recover from,
or fix, the consequences of those situations. When an exception is thrown by a step, it is
passed up the tree hierarchy until a matching handler is found. Handler steps are
annotated with control flow semantics that indicate how program control flow will
continue once a raised exception has been handled by the defined handler. Figure 7
shows four different types of continuation semantics for handlers. With these semantics,
a process definer can specify whether a step will continue execution, successfully
complete, restart execution at the beginning, or rethrow the exception for a higher level
parent step to handle.

As noted above, a Little-JIL process definition represents a process as a hierarchical
decomposition, where each step can be viewed as a procedure. Thus a key part of a
Little-JIL step definition is the representation of the artifacts that function as arguments
to the step. This argument specification is represented iconically as part of the interface
badge located atop the step’s iconic representation. Typical step artifacts are entities
such as data items, files, or access mechanisms. Artifacts are passed between steps by
two different mechanisms. Most commonly artifacts are passed between parent and
child steps very much the way arguments are passed from a calling procedure to a called
procedure. This hierarchical argument passing mechanism is complemented by Little-
JIL’s channel construct, a non-hierarchical argument passing mechanism. Channels
can be defined between any set of steps that provide argument artifacts to any set of
steps that are consumers of these artifacts. In the examples that follow channels are
generally defined between one source step and one destination step. Channels are
useful both for the actual communication of artifacts between steps, but also as conduits
of signals that can be used for the synchronization of steps that execute in parallel with
each other.

Also represented as part of the external interface icon are the resources that are required
by a step in order to support its execution. Every step has at least one resource that is

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

57

required, namely the agent, described above. But some steps may also require
additional resources, such as databases, tools, and people who are needed in order to
assure that step execution proceeds as it should. All of these resources as specified as
types, and a resource management capability to be used in conjunction with Little-JIL
process execution is expected to accept requests for resources as type specifications, and
then return resources instances that are of the requested type. Clearly this requires the
definition of a resource request language that is common to both the Little-JIL process
definition and to the resource management facility that is used to support process
execution.

Juliette is the execution framework that is used to execute processes written in Little-
JIL. Juliette executes Little-JIL process definitions by interpreting steps according to
specified sequences. While interpreting a step, Juliette makes requests to an
accompanying resource manager to obtain the resources that are required for the
execution of that step. The Juliette interpreter then notifies the selected agent by putting
the tasks to be done on the agent’s to-do-list (agenda). This is done using a distributed
Agenda Management System [Mccall 1998]. An agent, in turn, decides which task to
pick up from the list of tasks waiting on its agenda. It is expected that agents know how
to perform any task that can appear on the agent’s agenda, and that the agent will notify
the interpreter when a selected task has been completed. The resource (and thus agent)
definition, as mentioned above, is separate from, and orthogonal to, the Little-JIL
coordination definition. How an agent carries out a particular task is independent of the
coordination dictated by the process.

We present some definitions of agile system development methods that have been
written using the Little-JIL process definition language. Additional features of Little-
JIL will be described in the context of explaining some of the key details of these
models.

We begin by presenting a Little-JIL definition of the Scrum software development
method. As suggested by the preceding discussion, this process will be defined
hierarchically. We begin with the top-level definition of the Scrum process.

The Little-JIL Scrum definition represents Scrum as a decomposition into three
substeps executing in parallel: Manage Product Backlog, Manage Product
Release, and Manage Product Development. Manage Product Development
is, in turn, decomposed further as a series of different instances of the Development
Iteration step. The fact that Manage Product Development is decomposed in this
way is indicated as follows. The attachment of + sign to the edge connecting Manage
Product Development to Development Iteration indicates that one or more
instances of Development Iteration are the children of Manage Product
Development. And the right arrow icon in the Manage Product Development
step indicates that these substeps are to be executed sequentially.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

58

SCRUM IN LITTLE-JIL

Figure 8. Top level of the Scrum process

These three top-level Scrum sub-processes communicate with each other via two
channels, the product backlog channel and the release backlog channel (identified as
channels by means of the double-headed horizontal arrows in Figure 8) that hold
product and release backlog information. Each of these sub-processes, and the ways in
which they use these channels to communicate with each other are described in more
detail below.

Manage Product Backlog

The Manage Product Backlog step (Figure 9) is carried out as a sequence of
instances of the Update Product Backlog step, each of which performs some kind of
modification to the product backlog artifact, which is the comprehensive list of the work
to be done on the system being developed. The agent that carries out the Manage
Product Backlog step and all instances of the Update Product Backlog step is the
product owner (designated by the annotation “agent: ProductOwner” attached to the
dot atop the Manage Product Backlog step).

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

59

Figure 9. Elaboration of the Manage Product Backlog step

The product backlog artifact is taken from the product backlog channel and passed to
the Update Product Backlog step for processing, and written back after processing
has been done by virtue of its being removed (indicated by the solid left-facing
arrowhead annotation) from the product backlog channel by the Update Product
Backlog step. Moreover, the fact that the updated product backlog artifact is returned
to the product backlog channel is indicated by the right facing unfilled arrowhead.

Manage Product Release

The Manage Product Release step (Figure 10) is responsible for specifying how the
product backlog is to be partitioned into product releases. This is done as the
concurrent execution by the product owner of multiple instances of two substeps,
Update Release Backlog and Release Planning Meeting. In the Manage
Release Backlog step, the product owner selects from the product backlog the items
that are to be included in the next product release by placing those items in the release
backlog. The + sign on the edge connecting this step to its parent indicates that this
step is done one or more times.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

60

Figure 10. Elaboration of the Manage Product Release step

As was the case with the management of the product backlog in the Manage Product
Backlog step, a channel, the release backlog channel, is used to manage the release
backlog, with artifacts being removed from the channel for consideration and
processing (filled left arrowhead), and then passed as arguments to the Update
Release Backlog step. After the step is completed, these artifacts are passed back out
of the Update Release Backlog step and replaced in the channel (unfilled right
arrowhead). Because changes to the release backlog do not modify the product backlog,
the product backlog is accessed using a channel read (unfilled left arrowhead), and the
artifacts so accessed as passed into the Manage Release Backlog step through an
input-only argument. This step also requires the use of a release burndown tool, which
is indicated as a needed resource used to track the amount of work planned for the
release against the time left before the release date.

The Release Planning Meeting step is carried out zero or more times (note the * on
the edge connecting it to its parent). This step represents carrying out a meeting
between the product owner and the team to ensure that all hands know the release
schedule. Note that the release backlog artifact is passed into this step as an argument
in order to make the release backlog items available for this meeting. Scrum does not
specify the frequency or duration of release planning meetings.

Development Iteration

The heart of the Scrum process is the iterative performance of sprints. The
Development Iteration step (Figure 11) specifies how one of these iterations is to be
carried out. An iteration begins with a Sprint Planning Meeting to determine the
work to be performed during the current iteration. This body of work is represented by
the sprint backlog artifact. The Sprint Planning Meeting step is followed by the
Sprint step in which the work is actually performed. The iteration concludes with the
Sprint Review step and the Sprint Retrospective step. The Sprint Planning
Meeting step and the Sprint step are elaborated below.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

61

Figure 11. Elaboration of the Development Iteration step.

The Sprint Review step is a time-boxed meeting (note the diamond annotation that
specifies a fixed deadline for completion of this step) led by the ScrumMaster agent with
the support of the ProductOwner and team as resources. This step takes as an input
artifact (note downward arrow annotation) the product artifact that was produced as the
output of the Sprint step. The purpose of this Sprint Review step is to enable the
team to discuss the results of the preceding sprint, and to close the loop between the
product owner and the team. After the Sprint Review step concludes, the Sprint
Retrospective is carried out with the team as the agent, indicating that the team meets
in private to assess its performance during the last sprint as preparation for the next
sprint.

Sprint Planning Meeting

Figure 12. Elaboration of the Sprint Planning Meeting step

The Sprint Planning Meeting step (Figure 12) is elaborated here as a second-level
decomposition of the Manage Product Development step, but its execution
immediately follows the Manage Product Release step (see Figure 8). The purpose
of this step is to define and elaborate the sprint backlog artifact, which is a specification
of what the team is committing to complete by the end of the upcoming sprint (note that

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

62

the sprint backlog artifact is show as an output artifact [upward arrow] from the Sprint
Planning Meeting step). This step consists of two substeps executed in sequence.
The first step, Negotiate Sprint Goals, is led by the ProductOwner agent, supported
as a resource by the team. In this step the release backlog artifact is retrieved from the
release backlog channel (left-facing hollow arrowhead) and passed as an input
argument. During this step the Product Owner identifies the highest priority items in
the release backlog and negotiates with the team to determine which items are to be
done.

In the second part of the meeting, represented by the Elaborate Sprint Backlog step,
the ScrumMaster agent leads a discussion, supported by the team as a resource, that
results in decomposing the items comprising the sprint backlog artifact into tasks that
are expected to take no more than 1 day to complete. The resulting artifact is then
passed out of the Elaborate Sprint Backlog step, and then out of its parent, the
Sprint Planning Meeting step. It will then become an input artifact to the Sprint
step, to be described next.

Sprint

Figure 13. Elaboration of the Sprint step

The Sprint subprocess (Figure 13) is the heart of the Scrum process, being the activity
during which actual development work gets done. To be more precise, the Sprint
process consists of 30 (note the 30 annotation on the edge connecting the Sprint
parent step to its Daily Sprint child step) consecutive (note the right arrow step kind
badge in the Sprint step) performances of the Daily Sprint subprocess. As indicated
by the = sign badge in the Daily Sprint step, this subprocess is carried out as the
parallel performance of its three substeps, Daily Scrum, Work, and Revise Sprint
Backlog. Both the Daily Scrum and the Revise Sprint Backlog steps require both
access to and update capability for the sprint backlog, with the Daily Scrum step
consulting the sprint backlog to support determination of specific work to be done, and

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

63

the Revise Sprint Backlog step requiring access in order to update the sprint backlog
to reflect work that has been completed. These accesses for these two steps are
coordinated by using the sprint backlog channel to provide the needed concurrent
access permissions.

The Daily Scrum step is a 15 minute (note the specification of this deadline by means
of the diamond annotation) progress meeting during which the team meets to identify
the product that is to be developed. Note that the sprint backlog artifact is passed in as
a parameter, and then also passed out of this step, after which it is written to the sprint
backlog channel so that it is made available to the Revise Sprint Backlog step, which
may be executing in parallel.

After execution of the Daily Scrum step, there are multiple performances of the Work
step (note the + sign on the edge connecting the Work step to its parent). Each
instance of the Work step takes the product artifact as an argument and passes it back
out, presumably with the product artifact being comprised of more completed work
items after the execution of this step. The agent for this step is the team.

Concurrently with the performances of the Work step there are multiple performances
of the Revise Sprint Backlog step (note the * on the edge connecting this step to its
parent). The agent for this step is also team, and the effect of a performance of this step
is to update the sprint backlog to reflect the completion of work items enumerated
there. There is no fixed requirement for the frequency or periodicity of the Revise
Sprint Backlog step.

Summary: The foregoing Scrum method definition in Little-JIL has illustrated the way
in which a language such as this can clarify the relations among the processes,
subprocesses, tools, agents, artifacts, and resources that comprise the method. With
this particular definition formalism it is easy to see such relations as the way that
various processes comprise the method, the ways that subprocesses comprise the
processes, the ways that the processes and subprocesses generate and consume artifacts
and products, the identities of the various agents and their responsibilities for
performing specific processes, subprocesses and steps, and the needs for mechanisms to
coordinate concurrent access to key artifacts.

It is important to emphasize that a clear graphical notation such as the one shown here
can do much to support understandings of these relations. But it also is important to
note that the depiction is only a projection of an underlying method definition that is
specified using a rigorously defined process language. The existence of such an
underlying rigorous language means that disputes, disagreements, or
misunderstandings of the graphical notation can be resolved by consultation with, and
reasoning about, the underlying rigorous definition, with the semantics of that
definition being used as the basis for needed reasoning. The Little-JIL process
definition language, for example, is rigorously defined through the use of finite state
machines that provide the precise semantic meanings of each of the language’s different
step kinds.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

64

In the next section we will see that rigor in such a process definition language can also
be useful in supporting powerful analyses of processes written in that language.

ANALYZING PROCESSES DEFINED WITH A MICRO-PROCESS DEFINITION
LANGUAGE.
The previous section has demonstrated the precision that can be obtained by using a
sufficiently powerful process definition language to capture details of a system
development method such as the Scrum. But, as noted above, the use of such a language
to define such processes is of additional value in serving as the basis for powerful
analyses that can lead to greater insights into such processes, and for the detection of
defects and vulnerabilities in such processes.

In this section we illustrate this by demonstrating how the Little-JIL Scrum method
definition can be used as the basis for analyses that verify desirable properties, support
integration with other methods and indicate vulnerabilities.

Using Fault Tree Analysis to identify and remove vulnerabilities.

Fault tree analysis (FTA) is an analytic approach that is well known in many traditional
engineering disciplines, where it is used to identify the ways in which a specified hazard
might arise during the performance of a process [Chen 2006]. More specifically, in this
approach a graph structure, called a Fault Tree (FT) is built using AND gates
(represented iconically by a rounded connector) and OR gates (represented iconically by
a pointed connector) to indicate how the effect of the incorrect performance of a step
can propagate and cause consequent incorrect performance of other steps. The analyst
must specify a particular hazard that is of concern, where a hazard is defined to be a
condition that creates the possibility of loss of life or substantial financial loss. Thus, for
example, the delivery to a critical step of an incorrect artifact creates a hazard if the
performance of the step would then cause loss of life or substantial financial loss.

Once such a hazard has been specified, FTA can then be used to identify which
combinations of incorrect step performances could lead to the occurrence of the
specified hazard. Of particular interest are situations in which the incorrect
performance of only one step can lead to the creation of a hazard. Such a step is referred
to as a single point of failure. A single point of failure in a method or process creates a
particularly worrisome vulnerability. Thus identification of the existence of single
points of failure should be taken as an indication of the need to modify the method or
process to remove such single points of failure, thereby effecting important
improvement to the method or process.

Most previous work has focused on the use of FTA to identify and remove defects that
lead to hazards, but have focused correspondingly less attention on how FTs are
constructed. The need to be sure that an FT is complete and correct is acute as any
defect in the FT can cause FTA to be incorrect, perhaps leading to overlooking an

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

65

important way in which a hazard can arise. To address this problem, in earlier work
[Chen 2006] it has been shown that FTs can be generated automatically from a Little-
JIL process definition once the definition has been developed and a hazard has been
specified. The FT and hazard specification can then be used to identify such
vulnerabilities as single points of failure.

We now show that the technology described in [Chen 2006] can be applied to the
identification of single points of failure in methods such as the Scrum. We use this
example to indicate how a single point of failure can be removed. In this particular
example we do so by integrating Scrum with another method, thus also showing how the
manipulation of rigorously defined processes can be done with greater assurance of the
nature of the results of such manipulation.

Identification of a Scrum method hazard.

A key element of Scrum is the notion that at the end of each 30 day Sprint, the
ScrumMaster presents the product that the team has built. However, while it would
surely not be something that any Scrum practitioner would endorse, “write code for the
first 29 days and then only on the 30th day make a first attempt to integrate everything”
is not at all inconsistent with the definition of the Scrum method. We hasten to note
that this should not be perceived as a weakness of Scrum, but only an observation about
the intended scope of the issues that Scrum is intended to address. We observe that
Scrum explicitly states that it is intended as a management approach, and that it does
not specify any engineering processes. It is expected that performance of Scrum will be
integrated with appropriate engineering processes intended to support the instilling of
desired properties (e.g. product quality, process speed) into the product being created.
We now demonstrate how the above mentioned vulnerability can be identified by
building and analyzing an FT generated from the Scrum definition. We then
demonstrate how integrating the Scrum method so defined with the definition of a
Continuous Integration process can lead to an integrated method which removes the
single point of failure, leading to a process that does not have the original vulnerability.

A complete treatment of the way in which an FT is generated from a Little-JIL definition
is beyond the scope of this document, but the interested reader is referred to [Chen
2006] for more details. Suffice it to assert, however, that automated tools applied to the
Scrum definition leads to the generation of the FT shown in Figure 14.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

66

Figure 14. The Fault Tree generated by the Scrum definition, along with the
hazard, “Artifact product from Sprint is wrong”.

Note that the gates shown in Figure 14 are OR gates (represented by pointed connector
icons). Thus this FT specifies that the incorrect performance of the Work step is
sufficient to create the hazard that the artifact produced by Sprint will be incorrect.
Thus any instance of the (multiply instantiated) Work step in the Scrum method defined
in Figure 8 is a single point of failure. Presumably this is a vulnerability that should be
removed.

We propose that this vulnerability be removed by integrating the Continuous
Integration method into the previous description of the Scrum process.

Modeling Continuous Integration

To integrate the Continuous Integration method with the Scrum method (Figure 15), we
replace the step Work in the original Scrum definition, with a sub-process Checked
Work. In Checked Work, the original Work step is followed by the Integrate step,
whose purpose is specifically to integrate the work just completed with prior work
products. The successful integration of this new work is verified by the performance of a
post-requisite to the Integrate step that verifies the correctness of the integrated
artifact. If the verification does not succeed, then the Rework step is performed, to
make whatever modifications are necessary to ensure that the required modification are
carried out. Details of the Continuous Integration method are not provided here, as the
purpose of this section is to indicate how process rigor can support greater assurance
about the success of method integration. Details of the Continuous Integration method
definition would look very analogous to the details of the Scrum method definition.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

67

Figure 15. Integration of Continuous Integration into the Scrum process
definition

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

68

Figure 16. The Fault Tree generated from the integrated Scrum and Continuous
Integration processes using the hazard, “Artifact product from Sprint is wrong”.

To conclude this demonstration, we now show the Fault Tree generated from the
process definition as modified by the integration of the subprocess shown in Figure 16,
using the same hazard used to generate the Fault Tree shown in Figure 14.

Analysis shows that there is no longer any single point of failure step in this Fault Tree.
For this modified method, if “Step Work produces the wrong product”, then it will still
be necessary for “Exception ‘BuildFailed’ is thrown by step ‘integrate’ “ to fail to be
thrown (note that the icon connecting “Exception ‘BuildFailed’ is thrown by step
‘integrate’ “ to its parent is a complementation gate). Thus two steps must fail to be
performed correctly in order for the hazard to occur. In this way an identified
vulnerability has been removed by the integration in an appropriate way of a new
method into a prior method.

Using Finite State Verification to demonstrate the absence of defects.

Finite-state verification techniques are widely used to demonstrate the absence of
specified event sequence defects from computer hardware and from software code or
designs. In [Chen 2008] it is shown that Finite state verification can also be used to
demonstrate the presence or absence of such defects from definitions of methods and
processes that are sufficiently rigorously defined. In this section we now show how this
analysis technology can be used to check if user defined properties hold in the Little-JIL
Scrum model presented above.

The example event sequence property that we will study is that an integration failure is
always followed by rework to correct the problem. For this work we have used the
FLAVERS finite-state verification tool [Dwyer 2004], which uses finite-state machines
to specify properties that are most often created using a tool PROPEL that allows the use
of guided questions and disciplined natural language to aid the user in the creation of
the property specification [Cobleigh 2006]. To specify our property, we have answered
the guided questions from PROPEL as shown in Figure 17:

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

69

Figure 17. Progression of questions and answers used by the PROPEL tool to
evolve a finite state automaton precisely defining the property, “an integration

failure is always followed by rework”.

To generate this property:

1. The events of primary interest in this behavior are BuildFailed and
ProductReworked

2. If BuildFailed occurs, ProductReworked is required to occur subsequently.
3. Before the first BuildFailed occurs:

• ProductReworked is not allowed to occur.
4. BuildFailed is not required to occur.
5. After BuildFailed occurs, but before the first subsequent ProductReworked

occurs:
• BuildFailed is not allowed to occur again.

6. After BuildFailed and the first subsequent ProductReworked occur:
• ProductReworked is not allowed to occur again until after another

BuildFailed occurs;
• BuildFailed is allowed to occur again and, if it does, then the situation is

the same as when the first BuildFailed occurred, meaning that the
restrictions described in parts 2, 5, and 6 would again apply.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

70

The finite state automaton generated by PROPEL for use with FLAVERS is then:

Figure 18. The Finite State Automaton generated by the PROPEL session shown
in Figure 17.

To specify that reworking the system involves re-executing the step Integrate to fix the
integration errors, we elaborate the step Rework shown in Figure 16 as shown in
Figure 19.

Figure 19. Elaboration of the Checked Work process shown in Figure 18 to show
details about the nature of the Rework step.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

71

FLAVERS analysis of this process definition reveals that the desired property does not
hold: in the event that rework still does not result in a properly integrated system, the
postcondition on the Integrate step will be evaluated again, but there is no exception
handler specified on the Rework step to catch this exception. Thus, the rework is not
repeated a second time even if the first rework attempt proves to be unsuccessful. This is
a common subtle error in processes that involving rework. The error is readily corrected
by adding the missing exception handler to the Rework step.

The above example demonstrates the use of finite-state verification to identify problems
in method and process definitions, and to indicate how these defects might be removed.
For example, checking the property that every development iteration begins with a
Sprint Planning Meeting and ends with a Sprint Retrospective reveals that
although Scrum specifies several time-boxed tasks, it does not specify what to do if the
tasks are not completed within the allotted time. While this oversight is minor and
surely would be handled in an intelligent manner by the Scrum participants it
nevertheless shows how exceptional situations are commonly left out of informal
process specifications and may be easily identified through analysis such as is described
here.

REFERENCES
[Cass 2000] Aaron G. Cass, Barbara Staudt Lerner, Eric K. McCall, Leon J. Osterweil,
Stanley M. Sutton, Jr., Alexander Wise. “Little-JIL/Juliette: A Process Definition
Language and Interpreter,” 22nd International Conference on Software Engineering
(ICSE 2000), Limerick, Ireland, pp. 754-757, June 2000. (UM-CS-2000-066)

 [Chen 2006] Bin Chen, George S. Avrunin, Lori A. Clarke, Leon J. Osterweil.
“Automatic Fault Tree Derivation from Little-JIL Process Definitions,” 2006 Software
Process Workshop (SPW 2006) and 2006 Process Simulation Workshop (PROSIM
2006), Shanghai, China, Springer-Verlag LNCS, Vol. 3966, pp. 150-158, May, 2006.
(UM-CS-2006-01)

 [Chen 2008] Bin Chen, George S. Avrunin, Elizabeth A. Henneman, Lori A. Clarke,
Leon J. Osterweil, Philip L. Henneman. “Analyzing Medical Processes,” ACM
SIGSOFT/IEEE 30th International Conference on Software Engineering (ICSE'08),
Leipzig, Germany, May 2008, pp. 623-632. (UM-CS-2007-51)

 [Cobleigh 2006] Rachel L. Cobleigh, George S. Avrunin, Lori A. Clarke. “User Guidance
for Creating Precise and Accessible Property Specifications,” ACM SIGSOFT 14th
International Symposium on Foundations of Software Engineering (FSE14), Portland,
OR, pp. 208-218, November 2006. (UM-CS-2006-27)

 [Dwyer 2004] Matthew B. Dwyer, Lori A. Clarke, Jamieson M. Cobleigh, Gleb
Naumovich. “Flow Analysis for Verifying Properties of Concurrent Software Systems,”
ACM Transactions on Software Engineering and Methodology (TOSEM), Vol. 13, No. 4,
pp. 359-430, October 2004. (UM-CS-2004-006)

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

72

 [Mccall 1998] Eric K. McCall, Lori A. Clarke, Leon J. Osterweil. “An Adaptable
Generation Approach to Agenda Management,” 20th International Conference on
Software Engineering (ICSE 1998), Kyoto, Japan, pp. 282-291, April 1998. (UM-CS-
1997-045)

 [Wise 2006] Alexander Wise. “Little-JIL 1.5 Language,” Report Department of
Computer Science, University of Massachusetts, Amherst, MA 01003, October 2006.
(UM-CS-2006-51)

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

73

APPENDIX D – IMPLEMENTATION GUIDANCE

PACKAGED METHOD: SCRUM
Scrum can be considered more of a management approach than a technical one: It is a
lightweight project management methodology that only addresses project management
and planning; specific technical processes are left up to the team. Scrum was originally
designed for smaller teams composed of a ScrumMaster (project manager), the product
owner (stakeholder representative), and the development team. Requirements are
determined by input from all stakeholders and broken down into a set of (preferably)
independent features that can be completed in 2-4 weeks. The features, along with their
estimated time to completion, are kept in a product backlog. Analysis, development and
testing take place in 2-4 week iterations called sprints. At the beginning of each sprint,
the product owner, project manager, and team determine which features can be
completed during the sprint, considering priority and the estimated time required to
complete a feature.

During the sprint, the project manager ensures the team is focusing on their assigned
tasks and enforces accurate reporting of the amount of time spent on each feature. The
specific practices and techniques used during analysis, implementation, and testing
during the sprint are at the discretion of the development team. Each day, the team
gathers for a daily stand-up meeting where each member describes what he/she
completed the previous day, what he/she plans to do today, and anything that is
blocking the team member from completing his/her goal.

At the end of each sprint, the team updates the product backlog to reflect the time spent
on each feature and the time remaining on each feature. The team and stakeholders
meet to discuss problems and difficulties and to plan the next sprint accordingly.

Why we recommend it

Scrum is a good fit to the sponsor’s environment, given that teams need to get working
systems developed on tight schedules and with constantly evolving stakeholder needs.
The aim of Scrum is to provide visibility into system development progress and to use
constant feedback loops to optimize the system that is built given the available resources
and constraints.

Our assessment was borne out by the fact that Scrum was one of the most-often
mentioned methods on our survey of the state-of-the-practice of system engineering
agility. Survey respondents mentioned Scrum as helping to address three of the four
primary challenges we identified in the sponsor environment (namely, changing
requirements priorities and/or emerging requirements; obtaining useful stakeholder
input and dealing with conflicting stakeholder requirements; and dealing with conflicts
between developing new capabilities and supporting a currently deployed system).

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

74

Experiences found during our interviews (discussed in Section 4.1) provide further
examples of the way in which Scrum helps teams deal with emerging requirements and
stakeholder feedback.

Contexts where it is suitable

Our work indicates that Scrum is likely to be an optimal match with projects that:

• Exist in unpredictable development environments. More traditional development
methodologies tend to deal with unpredictability at the start of an iteration; Scrum is
explicitly designed to manage sources of variation and deal with changes at any time
that they occur.

• Are developing new products rather than extending existing systems [ADM2009].

• Are relatively small. An important open question is how well the Scrum processes (the
daily stand-up meetings in particular) can scale up to larger teams. An often-cited
recommendation is to conduct “scrums of scrums,” in which for example the daily
stand up meetings would be held both within and across small teams, each of which is
employing the scrum practices. Our interviews found an example of such practices on
a 200 person, 20 sub-team project, but the results indicated that coordination and
collaboration at this scale were problematic. Other authors have addressed the need
for agile practices in general and scrum in particular to scale up. Although examples of
success stories are hard to come by, some general advice for tailoring scrum for large
teams can be found, including the idea of starting small and increasing the number of
teams being coordinated only when the current practices are proving effective
[Hutson 2009]. Given our current understanding, a good rule of thumb is that scrum
be easily employed by teams of up to 10 people. Beyond that number, the
complications of additional communication overhead somehow need to be managed.

• Are collaborative. Teams of any size that are resistant to communication and
providing visibility into day-to-day activities will also be challenged to get the most
out of the stand-up meetings. Some teams have found that “…it can require quite a
significant social change from the solo-oriented software development into a cross-
functional team able to commit and be accountable as a team” [Marchenko 2008].

In addition, some teams have found it helpful to have personnel available to work with
customers and other stakeholders in between sprints, in order to better formulate their
requirements for the system. This policy helped the development teams better estimate
the effort estimates and plan the sprints [Mann 2005].

Another enabler is training. A report on adoption of Scrum at Yahoo! India focused on
the importance of training for the team and manager, with additional intensive training
needed for the ScrumMaster [Sharma 2007].

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

75

Within these parameters, scrum has been effectively applied in a variety of domains.
Our interviews found examples within defense, health care IT, and gaming systems, to
give just a few examples.

Known impacts on cost, quality, and schedule

The available evidence for Scrum indicates a likely increase in quality, for example:

• In a report from Yahoo! India, 80% of teams indicated improved quality after
adopting Scrum. [Sharma 2007]

• In a 2-year industrial case study, although there is no direct impact mentioned, the
team anecdotally experienced positive developer and customer satisfaction: “I believe
there has been far greater consistency, transparency and coordination since the
implementation of Scrum” [Mann 2005]

The available evidence for Scrum indicates a likely reduction in cost, for example:

• In a report from Yahoo! India, 95% of teams indicated increased productivity and
efficiency after adopting Scrum. The magnitude of the increase was 20%. [Sharma
2007]

The available evidence for Scrum indicates a likely reduction in schedule, for example:

• In a 2-year industrial case study, the team found a threefold reduction in the amount
of overtime necessary for meeting development goals, after Scrum was instituted.
[Mann 2005]

How to use it / monitor it

Like many other practices, teams often say they are doing Scrum when they have
adopted only some of the processes and tools associated with the method. Anecdotally,
many of us have encountered teams who claim to be doing Scrum but really have only
adopted the process of daily stand-up meetings. Full adoption of Scrum entails
additional processes to be in place, including planning meetings for the release as well
as the current sprint, as well as reviews and retrospectives. Hard evidence that a team is
really doing Scrum would be maintained lists of product and sprint backlogs, as well as
burn-down charts showing how those lists are being worked over time.

Definitions of the inter-related processes, artifacts, and resources involved in Scrum can
be found in Appendix C.

Useful resources

Teams applying Scrum may find the following resources useful:

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

76

• Active, Intelligent Management:
http://www.controlchaos.com/about/management.php

This site contains a good overview of terms, basic processes, and resources that may
be helpful for teams getting started with Scrum. It is maintained by a Scrum
consulting company, so it does contain some advertising.

• RUP in the Dialogue with Scrum:
http://www.controlchaos.com/module/RationalEdge0205.pdf

This article, from IBM’s online magazine The Rational Edge, provides a basic
introduction to Scrum along with ideas about how to incorporate Scrum into
environments already using the Rational Unified Process.

• Scrum Guide:
http://www.scrum.org/storage/scrumguides/Scrum%20Guide.pdf#view=fit

This URL links to the latest version of the Scrum guide, developed by many of the
people who have been instrumental in developing and popularizing the approach.
The latest version at the time of writing is dated November 2009.

• Scrum Development Process (Ken Schwaber):
http://jeffsutherland.com/oopsla/schwapub.pdf

A more detailed overview of the Scrum process, including a comparison to spiral and
incremental models, written by Ken Schwaber, who helped formulate the initial
version of the Scrum process.

Sources

[ADM 2009] Advanced Development Methods, Inc., “How It Works,”
http://www.controlchaos.com/about/how.php, retrieved on 2009-12-13.

[Hutson 2009] Hutson, S., and Componation, P. 2009. “Agile Software Development
and the Application of Its Principles to Large, Complex System Development,”
Unpublished white paper.

[Marchenko 2008] Marchenko, A. and Abrahamsson, P. 2008. “Scrum in a
Multiproject Environment: An Ethnographically-Inspired Case Study on the Adoption
Challenges,” In Proceedings of Agile 2008 (August 04 - 08, 2008). IEEE Computer
Society, Washington, DC, 15-26. DOI= http://dx.doi.org/10.1109/Agile.2008.77

[Mann 2005] Mann, C. and Maurer, F. 2005. “A Case Study on the Impact of Scrum on
Overtime and Customer Satisfaction,” In Proceedings of the Agile Development
Conference (July 24 - 29, 2005). IEEE Computer Society, Washington, DC, 70-79. DOI=
http://dx.doi.org/10.1109/ADC.2005.1

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

77

[Sharma 2007] Sharma, S. and Mehta, C. 2007, “Growing importance of Agile & Scrum:
The Yahoo! Experience,” Bangalore SPIN, retrieved on 2009-12-13.
http://www.bspin.org/archeives11/BSPIN_BCIC_Conf_Registration.doc/view

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

78

PACKAGED METHOD: RAPID PROTOTYPING
Rapid prototyping (often called Rapid Application Development when concerning
software) is the development of an executable system that implements or mimics a
subset of the desired functionality of a system. The working prototype is used to
uncover errors, ambiguities or omissions in the system requirements, identify usability
and other non-functional concerns, improve design, and improve maintainability. By
rapidly producing prototypes, developers can solicit feedback quickly and early in the
development process from key stakeholders. Rapid prototyping creates minimal
systems that demonstrate or explore functional requirements, but without the
architectural robustness or non-functional properties necessary for integration into the
final deliverable. Rapid prototyping can also be used to create minimal systems that
exhibit desired behavior for testing against the deployment system.

Why we recommend it

Rapid prototyping is a good fit for projects that are pushing the envelope in terms of the
functionality that needs to be delivered. It allows new approaches and new technologies
to be tested for feasibility, with quick corrective action taken based on evaluation of
intermediate versions of the system. It was created to allow faster development of
system requirements, and better adapt to changing requirements.

It is important to note that there are rigorous process elements – especially those
related to effectively capturing feedback from key stakeholders - that must be included
for prototyping projects to be successful.

Rapid prototyping was the most-often mentioned recommendation on our industry
survey, where respondents felt that it addressed three of the four challenge areas we
identified (namely, changing requirements priorities and/or emerging requirements;
obtaining useful stakeholder input and dealing with conflicting stakeholder
requirements; and integrating systems when interoperable components are being built
by different teams). The interviews reported in Section 4.1 found that rapid prototyping
was commonly used by our respondents, and provide examples of how all of these
challenges were being addressed by the use of rapid prototyping on projects.

Contexts where it is suitable:

Traditionally, the rule of thumb has been that the projects that can make the best use of
rapid prototyping are those that require a significant degree of user interaction. User
interface issues especially benefit from working through with a prototype. On the other
hand, systems that are more transaction-oriented, or which are expected to have
significant issues related to chronology or synchronization of functionality, are expected
to benefit less [Pfleeger 2009].

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

79

Although this is commonly accepted advice, we have found instances in which rapid
prototyping has been useful for systems outside of this range; for example, database-
intensive systems [Lichter 1993].

Known impacts on cost, quality, and schedule:

There has been a significant amount of experience published in the literature concerning
prototyping – most of it in rather early work when the concept of prototyping was just
being adapted for software-engineering and software-intensive systems. As a result,
there are several hard quantitative figures that can be found (although results on
contemporary projects may not be exactly similar). For example:

• One study compared different versions of the same small-scale system, some
built via prototyping and some based on a static specification. Results
showed that systems built with each approach provided roughly equivalent
functionality, but that prototyping required less effort (45% less on average
than the systems built via specification) [Boehm 1984].

• A case study examined the development of a 20KLOC system in a university
environment which was built around evolutionary prototyping. Regarding
cost, the authors note that approximately 13KLOC were discarded as the
prototype evolved into the final system (i.e. 33KLOC were developed and
paid for). However, they report that the final system was of good quality (12
delivered errors in total were detected after delivery to the customer, over a
period of 4 months), and that the system was easily maintainable
[Hekmatpour 1987].

• A survey examined five instances of prototyping in multiple industry and
manufacturing companies. Project budgets ranged from 2 to 240 person-
years of effort. Regarding cost, the authors note that in a prototyping context,
effort is often under-estimated for activities such as end-user evaluation of
the prototype and changing / reimplementing prototypes based on that
evaluation. Also, effective interaction with the end-users can be difficult; in
some cases, encouraging the users to list “all the ideas and wishes that come
into their heads” can result in many non-necessary functionalities making it
into the requirements, driving up implementation costs [Lichter 1993].

How to use it / monitor it:

Too often, teams are tempted to dive into software development without a full
understanding of what exactly they are trying to build, and call the resulting process
“prototyping.” Truly applying rapid prototyping means that a team should have
mechanisms in place for:

• Modeling business requirements: Before embarking on development of a
prototype, the team should have completed some type of analysis of the

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

80

customer’s business requirements. This analysis is necessary so that the
development teams knows exactly what functionality is supposed to be
demonstrated and evaluated in the prototype, as well as how it fits into the
larger context. Such an analysis is also necessary in order to have confidence
that the full range of appropriate customers / stakeholders have been taken
into account.

• Obtaining useful feedback on prototypes: The effort for constructing a
prototype will not have been well-spent unless there is an effective way for
that prototype to generate useful feedback, which can be used to develop a
comprehensive and correct set of requirements. Without an effective
mechanism, the team runs the dual risks of the users not being able to
visualize sufficiently what the final system should look like, or of the users
providing a too-comprehensive wish list that is infeasible to satisfy [Lichter
1993].

More details on the inter-related processes, artifacts, and resources involved in rapid
prototyping can be found in Appendix C.

Useful resources:

Teams applying rapid prototyping may find the following resources useful:

• Wikipedia has a useful page which provides a short overview of rapid prototyping and
links to a number of tools:
http://en.wikipedia.org/wiki/Software_prototyping#Best_projects_to_use_prototyp
ing

• UsabilityNet.org introduces a brief method description, which provides an effective
way of capturing user feedback on a prototype system:
http://www.usabilitynet.org/tools/rapid.htm

• Microsoft’s Visual Basic is one of the most commonly used tools for developing
prototypes of software systems: http://msdn.microsoft.com/en-
us/vbasic/default.aspx

Sources

[Pfleeger 2010] Pfleeger, S. L., and Atlee, J. (2010) Software Engineering: Theory and
Practice. Upper Saddle River, NJ: Prentice Hall.

[Boehm 1984] Boehm, B. W., Gray, T. E., and Seewaldt, T. 1984. “Prototyping vs.
specifying: A multi-project experiment,” In Proceedings of the 7th international

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

81

Conference on Software Engineering (Orlando, Florida, United States, March 26 - 29,
1984). International Conference on Software Engineering. IEEE Press, Piscataway, NJ,
473-484.

[Hekmatpour 1987] Hekmatpour, S. 1987. “Experience with evolutionary prototyping in
a large software project,” SIGSOFT Software. Eng. Notes 12, 1 (Jan. 1987), 38-41. DOI=
http://doi.acm.org/10.1145/24574.24577

[Lichter 1993] Lichter, H., Schneider-Hufschmidt, M., and Züllighoven, H. 1993.
“Prototyping in industrial software projects—bridging the gap between theory and
practice,” In Proceedings of the 15th international Conference on Software Engineering
(Baltimore, Maryland, United States, May 17 - 21, 1993). International Conference on
Software Engineering. IEEE Computer Society Press, Los Alamitos, CA, 221-229.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

82

PACKAGED METHOD: CONTINUOUS INTEGRATION
“Continuous Integration is a software development practice where members of a team
integrate their work frequently, usually each person integrates at least daily - leading to
multiple integrations per day. Each integration is verified by an automated build
(including test) to detect integration errors as quickly as possible. Many teams find that
this approach leads to significantly reduced integration problems and allows a team to
develop cohesive software more rapidly.” [Fowler 2009]

When following the process of continuous integration, developers will integrate their
code with a local copy of the mainline several times daily. The local copy of the mainline
includes a regression test suite including unit, integration and system tests (preferably
automated) that detect integration errors locally before committing to the mainline.
Developers should always obtain the latest update from the source repository and
rebuild as a final check before committing to the mainline.

Once developers eliminate any integration errors, they commit their new code (and
associated test cases) to the source repository on the mainline. When a commit is
received, all other developers are notified that a change has been made to the mainline
so that they can update their local working copies. Upon commit to the mainline, the
entire system is built and deployed to an integration machine that is a clone of the
production environment. The build tests are then run on the integration machine. This
automated build ensures that the new code is tested against the latest codebase
available, and that the build is tested in a clone of the production environment to
identify environmental errors that may not be present on the development machine. If
any errors are detected in the mainline, the developer fixes them and recommits.

Why we recommend it

Continuous integration is a powerful tool for detecting integration errors during
development, and also for enforcing interface standards. Continuous integration also
provides continuous feedback into the development process, avoiding “big bang”
integrations prior to delivery that are often costly and error-prone.

Continuous integration was one of the most frequently recommended MPTs on the
industry survey, and helps to address both integration/interoperability challenges and
sustainment challenges. The automated testing and deployment infrastructure
necessary for continuous integration reduces the development costs associated with
maintenance and evolution of existing products. Implementing continuous integration
in a development environment does incur initial overhead costs, however, teams will
realize a long term return on their investment, particularly in projects that are
maintained and evolved over an extended period.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

83

Contexts where it is suitable

Our research indicates that continuous integration is likely to be an optimal match with
projects that:

• Deliver frequently. Continuous integration eliminates “big bang”
integrations prior to delivery, reducing the likelihood that final integrations
will become costly and impact the delivery target. Also, continuous
integration increases the likelihood that bugs will be found earlier in
development, which is cheaper than fixing the bugs just prior to or during
delivery. [Fowler 2009]

• Can incorporate automated testing. A necessary condition for effective
continuous integration is rapid feedback. A long integration cycle that
requires the developer to execute tests and deploy build environments
manually increases the size of the feedback loop. Conversely, an automated
test and build suite allows the developer to perform other productive
functions and lessens integration effort. Furthermore, a long, effort-
intensive integration cycle will discourage the developers for integrating
frequently, preventing other developers from detecting conflicts in their own
changes. [Fowler 2009] Our interviewees on this topic reported how difficult
it was to do continuous integration manually, when they were just starting
out, and felt strongly that automation was a key enabler.

• Since the cost-of-fix increases exponentially as development continues, the
main benefit of continuous integration is to detect errors early and often.
Continuous integration can detect interface/interoperability conflicts and
errors closer to when they are introduced and before significant amounts of
code is structured around the original error. For example, the cost-of-fix can
increase dramatically over time in a tightly coupled system with multiple
components, or in components which broadcast messages to other hardware
or software systems.

Continuous integration can incur significant implementation costs driven by developing
an automated testing and build framework. For new (greenfield) software projects, the
return on investment for continuous integration will generally be realized sooner than
for existing projects where engineering automated tests for existing code may not be
viewed as cost-effective.

Our interviewees felt that projects that are not good candidates for the use of continuous
integration include those for which a significant amount of hardware integration is
required.

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

84

Known impacts on cost, quality, and schedule

There is little available research evidence on the efficacy of continuous integration;
however, it has become a de facto best practice in the software industry and is used in
companies such as Microsoft, Google and IBM. Investigating the implementation costs
and process improvements realized by continuous integration in a systems engineering
environment is an interesting and topical area for research collaboration.

Rumpe and Schröder surveyed 45 Extreme Programming teams from IT, consulting,
banking and biotechnology domains – continuous integration is one of the 12 original
practices of Extreme Programming. Over 90% of respondents stated that continuous
integration was a “helpful” process, while on 2% found continuous integration to be
difficult to implement in their teams.

How to use it / monitor it

Continuous integration requires that several key processes be in place. First, the
developers must maintain a single source repository to which they all have access to and
to which they all commit. Second, to encourage developers to integrate frequently and
to obtain rapid feedback, the build time must be kept reasonable. This requirement
necessitates an extensive automated test and build suite. Several continuous integration
tools (for nearly ever language) exist to support automated test and build. Finally, the
benefits of continuous integration are only realized if the developers integrate
frequently by committing to the mainline at least once per day and by locally testing
their changes multiple times per day.

The artifacts produced by continuous integration make it relatively easy to assess,
particularly when used in conjunction with continuous integration tools such as
CruiseControl. Automated test suites should grow in size as the developers commit to
the mainline, and version control logs can identify the frequency with which individual
developers are committing and checking out updated version of the mainline. Again,
the successful implementation of continuous integration is contingent upon its technical
infrastructure and the commitment of the development team to integrating frequently.

Definitions of the inter-related processes, artifacts, and resources involved in
continuous integration can be found in Appendix C.

Sources

[Fowler 2009] Martin Fowler, “Continuous Integration,”
http://www.martinfowler.com/articles/continuousIntegration.html, retrieved on 2009-
06-18.

[Duvall 2007] Paul Duvall, Steve Matyas, Andrew Glover, “Continuous Integration:
Improving Software Quality and Reducing Risk,” Addison-Wesley Professional, Upper
Saddle River, NJ, 2007. (See also http://www.integratebutton.com/ -- the website for

SERC-2009-TR-004 UNCLASSIFIED 15 December 2009

Contract Number: H98230-08-D-0171 DO001, TO002. RT009

85

the book.)

[Lee 2009] Kevin Lee, “Realizing continuous integration,”
http://www.ibm.com/developerworks/rational/library/sep05/lee/, retrieved on 2009-
12-09.

[Rumpe 2002] Bernhard Rumpe and Astrid Schröder, “Quantitative Survey on Extreme
Programming Projects,” Proc. 3rd International Conference on Extreme Programming
and Flexible Processes in Software Engineering, pp. 95-100, 2002.

[Shore1 2009] James Shore, “Continuous Integration on a Dollar a Day,”
http://jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html,
retrieved on 2009-12-09.

[Shore2 2009] James Shore, “Continuous Integration is an Attitude,”
http://jamesshore.com/Blog/Continuous-Integration-is-an-Attitude.html, retrieved on
2009-12-09.

